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5. 2D Geometry

In order to design and render complex scenes we require techniques
for transforming points and vectors. Points are used to represent
OpenGL primitives (glvertex) and vectors are used to represent

surface normals (necessary for computing the illumination at a point).

5.1 Points and Vectors

5.2 Applications of the Scalar Product (Dot Product)
5.3 Convex and Concave Obijects

5.4 Implicit Curves

5.5 Parametric Curves

5.6 2D Affine Transformations

5.7 2D Homogeneous Coordinates

5.8 Notes & Examples
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5.1. Points and Vectors

m A point is a position in space, e.g. Auckland
m A vector represents a displacement — a difference between two

points.

€ey

m The only way to represent a point is with reference to the origin of
a coordinate system. The vector from the origin of the coordinate

system to the point is the position vector of the point. ﬁ@;m;nﬁ"ﬁm&
. b
Example: Describe where +90 —— —— i
Hamilton is! L e RO T L e e o e *vgﬁ:f/ \v
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Points and Vectors (cont’d)

m Vectors are represented as 2-tuples (2D) or 3-tuples (3D) in a
coordinate system.

= \We denote the components of a vector v in 2D with v,and v, and
of a vector u in 3D with u,, u, and u;:

s We denote vectors with small bold letters and points with capital
letters, e.g. p is the position vector of the point P.

/ul\

Vl
V= u=|u,
V2

\Us
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Points and Vectors (cont’d)

= Operations on vectors
Can add, subtract and scale vectors

s Operations on points

Subtracting one point from another gives a vector (the
displacement between these points)

Can NOT add two points (what is Auckland + Hamilton??)

But we can add and subtract their
position vectors w.r.t. some origin. 4

a a+b

P
o

" P-Q=p-g

Qe >
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Basic Operations on Vectors

= Addition 4
0 Represents the combined displacement U+ V= Y 4 Vi _ U+,
u, +V,

0 Implement by adding components u, Vv,
m Scaling
0 i.e. multiplication by a scalar U, Sy
0 Defined such that v + v = 2v Su:S(u j:[su j
0 Implement by multiplying all components by the scalar. 2 2
m  Subtraction
0 Addition of a negated vector, U=V = I R
l.e. one in opposite direction. U, Vv, u, —V,
0 Implement by subtracting components.
m The magnitude of a vector 5 5
0 i.e. its "length" (2-norm). |u| =\ U |Su| :|s||u|
= Normalisation Y
0 The process of creating a unit vector (length 1) Uu=—
0 Scale by reciprocal of magnitude: |U|
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Basic Operations on Matrices

m Dimension of a matrix
0 A mxn matrix is a matrix

has m rows and n columns. Example of a2 x3 matrix

s Addition/Subtraction
0 Implement by adding/subtracting components.

\ iN:(mu miz]i(nu nlzj:[rminu mizinlzj
rnZl m22 n21 n22 rn'Zl i n21 m22in22
m Scaling
0 Implement by multiplying all M :£S My
components by the scalar. S My,
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Basic Operations on Matrices (cont’d)

m Transpose (indicated by T) of a matrix M
0 Swap m; and m; for all i,).

m, m,
MZE:}; nr:iz :};j:MT: m, M,
oo m, My

Algebraic rules for transposition:

(MT)'=M
(sM)T=s(MT)
(M+N)T=MT+NT
(MN)T=NTMT
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Basic Operations on Matrices (cont’d)

m Determinant det M (also written | M |) of a matrix M
For a 2x2 matrix:

= MM, =M, M,

|m1 m,
m, m,

m Inverse M1 of a matrix M
For a 2x2 matrix:

(mﬂ mlz)l: 1 (mzz —mlzj
m, m, m,Mm,, —Mm,Mm, { =N, My

Exercise: Prove that M1 is the inverse of M, i.e. show M-IM=MM-1=|
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Basic Operations on Vectors and Matrices

m The transpose of a vector
0 Transpose of a row vector is a U, .
column vector and vice versa . :( ]: ut = )
m The dot product (scalar product)

Symmetry: asb=bea J y
Linearity: (a+b)ec=asc+bec uev= ( 1}-[ 1) =u\, +WV, = u'v
Homogeneity: (sa)*b=s(a<b) U, >

|b|?= beb

s Matrix multiplication
0 Multiplying an Ixm and m xn matrix gives an | xn matrix with

the elements &, =b,¢; +..+0,.C; = thck, [Note: a;= rowscolumnj]
k=1
A:BC: qj bucmzczz]

b21 b 22 C 22 b21('.;.|.1 + b22C21 b21C12 + b22C22
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5.2 Applications of the Scalar
Product (Dot Product)

m Angle between two vectors
m Projection of a vector

m Distance of a point to a line
m Reflections

m Area of a triangle
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The Angle between Two Vectors

m  The most important application of the dot product is to find the angle between
two vectors (or two intersecting lines).

o lbj cosg, . c/cosg, y
“|[plsing, ) T |dsing. C
hence
b e c=|bjc|cosg, cosg, +|b|cising, sing, / b
= |bfc|cos(¢, - 4,) > X
¢c ¢b
=|b|c|cosg
Two non-zero vectors b and ¢ with common start point are
lessthan  90° apart if bec>0
exactly 90° apart if bec=0 [b and c are orthogonal (perpendicular)]
more than  90° apart if bec<0
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Projection of a Vector

In many applications we must compute the projection of a B
vector onto another vector and the distance of a point from
a line: b b,
Let L be a line through A in the direction of a. -
Let b be the vector from A to a point B. - b
P L_——"p @ c?rthogonal
_ o projection
We want to find b, the orthogonal projection of b onto a. of b onto a
b=Db,+b, =ka+b, for somek Note: at this point we don’t know
the value for b, =b—b_ but we
bea= (ka+ ba) ea=kaea+ ba *a= k(a' a) know it is perpeandicular ?o a.
bea
= k=
aea
bea
=b, = a
aed
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o
Distance of a Point to a Line
. . bea
= In the previous slide we computed b, = a
aed

hence the distance of B to the line L is

bézb—szb—b.a%
aed
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Reflections

m Ray tracing is a popular rendering algorithm which displays a

scene by tracing rays from the eye through each pixel of the
screen into the scene (i.e. trace a light ray hitting the eye
backwards — see 2" part of this course!). If the scene contains
reflective objects such as mirrors it is necessary to compute for a
ray with direction a its reflection r.

Let n be the surface normal at the

point where the ray hits the object:

An An
asn_aen A\
= n=——s-n=(a*n)n A r a r
nen |n| — —
oo m —m
=r=e-m=(a-m)-m=a-2m
=a—2(a*n)n v
reflective object e g e g
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Orthogonal Vectors in 2D

s Leta=(a,, a,)"then in 2D we can find two
vectors perpendicular to it

al:(_az ’ al)T (nOte ate a:O) In the textbook at is

-al=(a2 ’ _al)T (note -ate a=0) y called the “Perp” vector
A
a
at
9]
\ X
at

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 15




" S feley
The Area of a Triangle (in 2D)

m The area of a parallelogram:

A=gh A
14 ateb b
h:bLz—al bLalz—‘ ‘
al latea El A
A/l h
J_ b‘ é_J‘
2] >—> X

a-fin=g " e

NOTE: These formulas are only valid in 2D!!

Area of a triangle:
Area is half the area of the parallelogram formed by two of its

edges \
L
............................................................................................ ’ 2
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5.3 Convex and Concave Objects

= A Convex Polygon is a polygon where any line connecting any

pair of vertices lies entirely within the polygon (this is equivalent
with: all interior angles between neighbouring edges are smaller or
equal to 180 degree). If a polygon is not convex it is called

concave.
o

convex not convex

The Convex Hull of a set of points is the smallest
convex set containing the points. [i.e. smallest
convex polygon containing the points]

Convex Hull
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5.4 Implicit Curves

Implicit curves y
0 A 2D curve can be defined as the set of points p=(x,y)" A
fulfilling the mathematical equation f(x,y)=0. k\
>
Example: \/1 X
X2+y2-1=0

defines a unit circle centred at the origin

Disadvantages:

0 Modelling is non-intuitive (e.g. how to draw a penguin?) \)-4./

o Difficult to draw: have to find a set of points fulfilling the equation (hard!)
and connect them by line segments.

T
Advantages: n= [af of ]

0 Easy to compute normal n at a point (X,,Y,)™ oxX dy o)
'ry
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5.5 Parametric Curves

Parametric curves
0 A 2D curve defined by a set of points p(t)=(x(t), y(t))T where x(t) and y(t) are functions
of the parameter t (often called the “speed”). y
0 Have to specify the parameter interval [t t...] for t. A
It's a good idea to specify curve such that [t 1=[0,1]. 1_

Example: p(t)=[§?j§;tj , te[0,]] <>1 >

defines a unit circle centred at the origin.

min? tmax

Disadvantages:
00 Modelling is still non-intuitive (e.g. how to draw a penguin?) k

AN

Advantages it i dyY'
0 Can compute tangent at a point by the derivative of the components P '(t) = (E EJ

0 Easy to “splice” curve segments together.
0 Can draw curve by computing points on the curve and connecting them by line
segments.
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Parametric Curves (cont’d)

m Examples for parametric curves (in all cases te[0,1] ):

Curve with centre ¢ and radius r:
C, + r cos(2rt)
p(t) =[ " ]

C,+rsin(2rzt)

Ellipsoid with centre c, long axis a and short axis b:

_ (¢ +acos(2rt)
p(t) = (cz +bs n(2m)]

Logarithmic spiral with centre ¢ and n revolutions:

o(t) = (cl + f (8) cos(H)

_ wheref (8) = Ke* , 8 = 2znt
c, + f(8)sin(f)
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Parametric Curves (cont’d)

. V2
= How to draw a parametric curve? Vs v,
: i :
Compute (n+1) points v, =p| — | fori=0,...,n on the curve
n Vo

Connect the points with line segments

B GO\ ParametricCurve.h - |I:I|E|
S A wirtual class for a 2D parametric curve j
<+ Ho instances of thiz claszs can be constructed
cla=zs CParametricCurve
1
public: J

CParametricCurve( ) {1}

wvirtual ~“CParametricCurvel){}

volid drawi(); S draw=s curve as a line =strip

wirtual voilid computePointOnCurve(float t, floaté =, floaté vi=0;

L4 computes curwve point plitli=(xit), vwitl)

protected:

float wertices[(n+l][2];

wold init(); S computes n vertices on the curve

. w
1< i
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Parametric Curves (cont’d)

B G ParametricCurye.h - |I:I|i|
class CParametricCircle: public CParametricCurve j
public:

CParamnetricCirclel )
CParametricCircle(float centreX, float centreY. float radius);

wirtual ~CParametricCirclel){} _J
wolid computePointOnCurve(float t, floaté =, floaté vl
private:
float cE,cv; & E—ocoordinate and y—-coordinate of the centre
float r; S radius
I -
KN o
void CParametricCurve::init(){ /I compute (n+1) points on the curve

for(int i=0;i<=n;i++)
computePointOnCurve((float) i/(float) n,vertices[i][0],vertices][i][1]);}

void CParametricCurve::draw(){ /[ draw line segments
gIBegin(GL_LINE_STRIP);
for(int i=0;i<=n;i++) glVertex2fv(vertices]i]);
glEnd();}

void CParametricCircle::computePointOnCurve(float t, float& X, float& y){

X=CX+r*cos(t*2.0*PI); ©
y=cy+r*sin(t*2.0*PI);}

=lolx|
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5.6 2D Affine Transformations

Affine Transformations transform a pair of parallel straight lines to
another pair of parallel straight lines and preserve ratios of distances.
Assume for now that the transformations apply only to points but with
an origin and an underlying vector space defined.

Examples of affine transformations:

= Scaling about Origin [qu — (Sl Oj( plj
For any point p= (p4, p,)7, d, 0 S, AP,
scale p, by factor s,, p, by factor s,. l.e. q=M_,p
s O
= Translation ("movement") whereM e = (o 52]

Add a vector t to all points in the
scene,l.e.q=p +t
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2D affine transformations (cont’d)

= Note that "scaling” includes "reflection” if s; and/or s, is negative:
y

— L N
Reflection at the y-axis: 4= 0 1 P R \%/ P

> X

y
1 O p_[p j
Reflection at the x-axis @ =( jp T/( 2 . X

0O -1

gt
-1 O T/v P2
Reflection at the origin  Q =£ ]p > X
0 - q{fﬂA/‘
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2D affine transformations (cont’d)

m Rotation about origin by an angle 6 (right-handed i.e. anticlockwise)

Proof: UDOO

y {00545" —sjn45°} y 0=M qaP

4 sn45’  cos45’ cos@ -—-siné
> where M ... =| .
\ sng cosé
>y 45 X
m Shearing
— 1 xShear
where M g, =

yShear 1

> X > X

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 25




" eley
Some properties of affine
transformations (both 2D & 3D)

m Straight lines are preserved
m Parallel lines remain parallel
m Proportional distances are preserved

m Any closed area in 2D or volume in 3D is multiplied by | det M |
(unchanged by translation)

m Any arbitrary affine transformation can be represented as a
sequence of shearing, scaling, rotation and translation

m Affine transformations do not in general commute (i.e. T,T,
#zT,T1)
m Transformations are associative, i.e. T,(T,T3) = (T,T,) T,
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5.7 2D Homogeneous Coordinates

Translation is a nuisance - don't have a matrix
representation for it.

So we introduce homogeneous coordinates as a way of
"unifying" the representation of translation with the other
transformations.

s Theidea

s  Geometric interpretation

s Converting from HC to ordinary coordinates
s  Composition of transformations
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The idea

Represent the ordinary 2D point (X, y)" as a homogeneous
coordinate point (x, y, 1)T.

Then can do translation by: (q,) (1 0 t\(p)
q, (=0 1 ¢t | p,

1) 00 1)1

/qx\ /a b O\/px\

and the other transformations by q, |=|c d O| p,
(1) (0 0 1)1
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Geometric interpretation

I:)actual |\~L

Qactual

X

Can see that the translation in 2D is implemented as a
shear in 3D.
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Converting from HC to Ordinary Coordinates

= More generally, we regard all homogenous coordinate
points (w p,, W p,, W)T, w # 0, as representing the same
ordinary coordinate point (p,, p,)’.

s Hence, in general, the homogeneous coordinate point
(a,b,c)T converts to the ordinary coordinate point (a/c,
b/c)T.

= With all the transformations so far, ¢ will equal 1, but
we will see a couple of examples later where this is not
the case.
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5.8 Notes & Examples

Be careful when transforming vectors. Doesn't work
for position vectors or surface normals (i.e. vectors

perpendicular to given surfaces).

apply Mshear,

—V Z\ V'EM,  V
Vv 1 M 12 M, vV 1¢v'
— , o :> —

o)) ™ (0 1 0
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Transforming Vectors (cont’d)

€ey

s How do we find the transformed surface normal v’ ?

v isparpendicular to (b—a) & (b—a)ev=0<=(b-a)' v=0

b ) b’
/—>V apply I\/I_I\/Ishear> |
ﬁC j ~ V
a o a'

v' must be perpendicular to (b'-a') < (b-a)ev'=0< (b-a) v'=0

(b-a) v'=(Mb—Ma)" v'=(M(b-a)) v'=(b—a) MV’

Choosev'=(MT) " v then (b'-a)"v'=(b-a)'M" (M") " v=(b-a)+v=0

v'=(MT)_1v=(M‘1)T v for any surface normal vand linear transf. M
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Composition of transformations

m  With homogeneous coordinates, it's now much easier to compose multiple
transformations into a single one.
m Consider for example the problem of rotating some object about its centre point C.
translate the whole object so that its centre is at the origin, rotate about the
origin, and then translate back.

Hence, transformationis (q g, 1)T:|\/|(p1 P, 1)T

y q where

0 1 0 c\fcos® —-sngd 0)1 0 -c
c M=0 1 ¢, |[sind cosd 0|0 1 -c,
0 0 1

0 O 1{0 0 1

4>X

Can multiply the three component matrices to get the composite
transformation matrix M, and then apply M to all points in the object.

UDOO: Work out M — show that it is equivalent to a rotation of 6 followed by a
single (different) translation.
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Example 1

m In general affine transformations do not commute:

First scale by (1,2), then rotate 90°

<

Il
o O
P O O
o O
o N O

o O
— O O
Il
o r»r O
N
R O O
=

First rotate 90° then scale by (1,2) ; )

O 0O -1 O 0O -1 0 " ]

2 0|1 0 O|=2 0 O
O 1))0 0 1 O 0 1

1
M=|0
0
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Example 2 &

m Find the homogenous coordinate transformation matrix that transforms the figure
on the left to the figure on the right

1

0 0 1 a O = \

m Often easier to do these backwards, then take inverse. In this case, starting with
figure on right:

Rotate -30° , shift by (-3,1) , scale by (1/2, 1)
m Hence required transformation from right to left is:
R(30) T(3,-1) S(2,1)

Easy to convert to HC matrix expression [UDOO]
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Example 3

m Given is the 2D scene in part (a) of the image below. Write down the
homogeneous 2D transformation matrix M, which transforms the object
shown in (@) into the object in part (b) of the image. You are allowed to write the
transformation matrix as a product of simpler matrices (i.e. you are not required
to multiply the matrices).

0 2 "X ) 5 units
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