
COMPSCI 372 S2 C - Assignment 1 – Sample Solution 1 of 7

1. Introduction to Computer Graphics (10 Marks)

(a) [1 Marks] Open the image “GyeongbokgungPalace_Seoul.tif”with a drawing program and
find out the RGB values of the pixel in the top left corner of the image. If you use PaintShop
then you can use the “DropperTool” (see below). Create a Word document
Ass1Answers.doc and write your answer into it.

 Solution:

 RGB = (112, 161 193)

 NOTE: If you use the dropper tool it easier to pick the correct (top-right) pixel if you
 first enlarge the image. Alternatively you can save the image in a suitable
 text format (e.g. “.ppm?) – the top-left pixel is the first pixel in the file).

(b) [1 Marks] What was the name of the NZ developed software which was used for the crowd
animation scenes in “Lord of the Rings”? Give a link to a video on the web giving an example
how the software works. Write your answer into the document Ass1Answers.doc.

 [HINT: Check out the company website or YouTube]

 Solution:

 The company is “Massive Software” (http://www.massivesoftware.com/

 There are lots of good examples illustrating how the software works on YouTube

 and the company website, e.g. under “Special Features”:
 http://www.massivesoftware.com/special-features/

 More informative examples are given in the SIGGRAPH course notes, which however
 are not publicly available.

COMPSCI 372 S1 C - Assignment 1
Sample Solution

Computer
Science

COMPSCI 372 S2 C - Assignment 1 – Sample Solution 2 of 7

(c) [1 Marks] Computer animations are usually recorded with 20-30 frames/second. South Korea
uses the Television standard “NTSC M” – how many images per second does this TV
standard utilise? Write your answer into the document Ass1Answers.doc.

 [Hint: Search the web with Google]

 Solution:

The “NTSC M” standard was initially designed for Black and White television using 30
frames/second and only required a narrow bandwidth. However, after colour TV was invented
it turned out that encoding the colour signal interfered with the audio signal. With some clever
engineering the developers managed to adapt the standard to colour TV by dropping the frame
rate to 29.97 frames/second.

 More information on “NTSC M”: http://en.wikipedia.org/wiki/NTSC

Detailed explanation why the frame rate is 29.97:
http://www.videointerchange.com/pal_secam_conversions.htm

(d) [2 Marks] Despite huge progress in the past few years there are still no completely realistic

computer generated facial animations available. Explain why it is so difficult to model and
animate a realistic looking human face.

 Solution:

Humans are very familiar with human faces because we see them everyday. Hence small
abnormalities in facial texture (e.g. too smooth), skin illumination or facial expressions are
immediately registered by the human brain.

(e) [5 Marks] The picture below shows on the left a 3D object with 6 faces and on the right a 2D

shape which when folded appropriately represents the 3D object on the left. In order to
illustrate the correspondence between the two representations three of the faces have been
numbered.

 The image below shows a more complex 3D object with 10 faces. Draw a 2D shape which,
 when folded appropriately, results in this object. Note that there are multiple correct solutions.
 Make sure that your 2D shape has 10 faces and that it’s connected (i.e. it must be one single
 shape). Indicate which of the faces of your 2D shape correspond to the faces 1-6 in the image
 below and colour the edges as in the image below.

COMPSCI 372 S2 C - Assignment 1 – Sample Solution 3 of 7

 You can draw your solution using a drawing package such as Freehand or you can draw it on
 a piece if paper and then either scan it in the lab or make a digital photograph of it. Please add
 the image of your solution to the document Ass1Answers.doc.

 Solution:

There are many different correct answers for this question. Below is only one of the possibilities.

COMPSCI 372 S2 C - Assignment 1 – Sample Solution 4 of 7

2. Modelling with “Blender” (10 Marks)

In this question you will design a rounded 3D model of the first two letters of your UPI (i.e. your
initials). Please use capital letters. For example, my UPI is “bwue001”and hence I create a model of
“B W”.
Please make absolutely sure that you model the first two letters of your UPI – modeling different
letters will result in zero marks.

(a) [6 Marks] Model the outline of the 2D shape of your initials using Bezier curves as described in

the Blender tutorial (http://www.cs.auckland.ac.nz/~jli023/opengl/blender3dtutorial.htm , section
“curves”). At the end your model should look similar to the picture below. Save your model as a
file Ass1Q2Outline.blend.

(b) [4 Marks] Extrude the 2D shape into a 3D model and create nice smoothly rounded edges
using the beveling tool as described in the tutorial. Save your model as a file
Ass1Q2Final.blend, position it appropriately with respect to the camera and create a
screenshot and save it as Ass1Q2Final.jpg. The images below give an example.

COMPSCI 372 S2 C - Assignment 1 – Sample Solution 5 of 7

3. Introduction to C/C++ and OpenGL (10 Marks)

In this question you will program a simple memory game. The game uses 10 pairs of identical cards
which lie on the table face down. You can click 2 cards which are put face up – if they are the same
they are removed, otherwise they are put face down again. The aim is to find all pairs of matching
cards as quick as possible with as few clicks as possible. The picture below shows an example.

Download the file Ass1Q3.zip from the assignment web page and unzip it. The file contains a .NET
solution with the program skeleton for this memory game. The files MyMath.h and MyMath.cpp
contain the class CVec2df which implements a two-dimensional floating point vector. The x-
coordinate of an object v of type CVec2df is accessed with v[X] (or v[0]) and the y-coordinate with
v[Y] (or v[1]). The class implements typical arithmetic operations on vectors such as vector addition
and multiplication with a scalar.
The file ass1Q3.cpp contains a function geometryLibraryTest() with some examples, e.g.

 CVec2df v1; //
0
0
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1v

 v1[X]=3.0f; v1[Y]=1.0f; //
3
1
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1v

 CVec2df v2(1.0, 2.0); // 2

1
2
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

v

COMPSCI 372 S2 C - Assignment 1 – Sample Solution 6 of 7

 v2*=5.0f; // 2 2

5
5*

10
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

v v

 CVec2df v=v1+v2; //
3 5 8
1 10 11
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

v

(a) [2 Marks] Implement the operator ‘*’ for the CVec2df class which takes as input two vectors

and returns the dot product (type float) of these vectors. The dot product of two vectors u and v is

defined as: yyxx
y

x

y

x vuvu
v
v

u
u

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
•⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
.

(b) [2 Marks] Implement the output operator ‘<<’ for the CVec2df class. A vector is output with its

coordinates between brackets, i.e. “(x-coordinate, y-coordinate)”. In the example above v should
be output as “(8, 11)”. You can test your solutions for (a) and (b) by uncommenting the last two
lines of the function geometryLibraryTest().

Solution (for (a) and (b)):

// header file
class CVec2df
{
public:

 // rest of class omitted
 // dot product
 friend float operator*(const CVec2df& v1, const CVec2df& v2);
 // output operation
 friend ostream& operator<<(ostream& s, const CVec2df& v);
 private:
 float *v;
 };

 // source file
 float operator*(const CVec2df& v1, const CVec2df& v2)
 {
 return v1[X]*v2[X]+v1[Y]*v2[Y];
 }

 ostream& operator<<(ostream& s, const CVec2df& v)
 {
 s << "(" << v[X] << ", " << v[Y] << ")";
 return s;
 }

An OpenGL scene is drawn by defining a display method which is given as an argument to
glutDisplayFunc(). In order to make your code more readable it’s a good idea to use an object-
oriented design and to define various classes for geometric objects, which all inherit a draw method
from a common super class.

(c) [3 Marks] A convex polygon is specified by a list of vertices. Implement the draw method of the

class CConvexPolygon2df such that it draws a filled polygon using the RGB colours defined
in its superclass.

Solution:

void CConvexPolygon2df::draw(){
 glColor3f(r,g,b);
 glBegin(GL_POLYGON);
 for(int i=0;i<numVertices;i++)
 glVertex2fv(vertices[i].getV());
 glEnd();
}

COMPSCI 372 S2 C - Assignment 1 – Sample Solution 7 of 7

(d) [3 Marks] Define a class CEllipsoid2df in the files Object2df.h and Object2df.cpp
which is a subclass of CConvexPolygon2df. An ellipsoid has a center (type CVec2df), a
major radius a and a minor radius b (type float) and a colour (specified by three float
variables r,g,b). Note that in the constructor you have to define: “type=ELLIPSOID; ”

The ellipsoid class should have the same methods as the convex polygon class, i.e.

- a default constructor
- a constructor taking the center and the major and minor radius as arguments
- a method setColour
- a method draw
- a destructor

Note that in order to get full marks you should inherit methods where appropriate and only write
new code where necessary. The ellipsoid must be represented by a convex polygon with n=32
vertices vi around its circumflex. If the ellipsoid has the centre (xc,yc) and the major radius a and
the minor radius b than these points are defined by

cos 2

sin 2

c

i

c

ix a
n
iy b
n

π

π

⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟=
⎜ ⎟⎛ ⎞+⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

v

After you have implemented the class, please uncomment the line #define
ELLIPSOID_IMPLEMENTED at the top of the file ass1Q3.cpp.

Solution:

// Header file
class CEllipsoid2df:public CConvexPolygon2df
{
public:
 CEllipsoid2df();
 CEllipsoid2df(const CVec2df& c, const float aa, const float bb);
 virtual ~CEllipsoid2df();
private:
 CVec2df centre; // Centre
 float a,b;
};

// Source file
CEllipsoid2df::CEllipsoid2df():CConvexPolygon2df(){ type=ELLIPSOID; }

CEllipsoid2df::CEllipsoid2df(const CVec2df& c, const float aa,
 const float bb):centre(c),a(aa),b(bb)
{
 type=ELLIPSOID;
 int numCircumferentialSteps = 32;
 numVertices=numCircumferentialSteps;
 vertices=new CVec2df[numVertices];
 for(int i=0;i<numVertices;i++){
 vertices[i][X] = centre[X] + a*cos(2*PI*((float)i/(float)numVertices));
 vertices[i][Y] = centre[Y] + b*sin(2*PI*((float)i/(float)numVertices));
 }
}

CEllipsoid2df::~CEllipsoid2df(){}

