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String Matching Algorithms

Georgy Gimel’farb

(with basic contributions from M. J. Dinneen, Wikipedia, and web materials by

Ch. Charras and Thierry Lecroq, Russ Cox, David Eppstein, etc.)

COMPSCI 369 Computational Science
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1 String matching algorithms

2 Näıve, or brute-force search

3 Automaton search

4 Rabin-Karp algorithm

5 Knuth-Morris-Pratt algorithm

6 Boyer-Moore algorithm

7 Other string matching algorithms

Learning outcomes: Be familiar with string matching algorithms

Recommended reading:
http://www-igm.univ-mlv.fr/~lecroq/string/index.html

C. Charras and T. Lecroq: Exact String Matching Algorithms. Univ. de Rouen, 1997
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String Matching (Searching)

String matching or searching algorithms try to find places where
one or several strings (also called patterns) are found within a
larger string (searched text):

... try to find places where one or several strings (also...

Pattern: ace
... try to find places where one or several strings (also...

Formally, both the pattern and searched text are concatenation of
elements of an alphabet (finite set) Σ

• Σ may be a usual human alphabet, for example, the Latin
letters a through z or Greek letters α through ω

• Other applications may include binary alphabet, Σ = {0, 1},
or DNA alphabet, Σ = {A,C,G, T}, in bioinformatics
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String Searching: DNA alphabet

DNA alphabet contains only four
“letters”, forming fixed pairs in the
double-helical structure of DNA

• A – adenine: A pairs with T

• C – cytosine: C pairs with G

• G – guanine: G pairs with C

• T - thymine: T pairs with A

http://www.biotechnologyonline.gov.au/
popups/img helix.html http://www.insectscience.org/2.10/ref/fig5a.gif
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String Searching: DNA alphabet

http://biology.kenyon.edu/courses/biol114/Chap08/longread sequence.gif
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String Searching (Matching) Problems

http://www-igm.univ-mlv.fr/∼lecroq/string/index.html

String matching: Find one, or more generally, all the occurrences
of a pattern x = [x0x1..xm−1]; xi ∈ Σ; i = 0, . . . ,m− 1, in a text
(string) y = [y0y1..yn−1]; yj ∈ Σ; j = 0, . . . , n− 1
• Two basic variants:

1 Given a pattern, find its occurrences in any initially unknown
text
• Solutions by preprocessing the pattern using finite automata

models or combinatorial properties of strings

2 Given a text, find occurrences of any initially unknown pattern
• Solutions by indexing the text with the help of trees or finite

automata

• In COMPSCI 369: only algorithms of the first kind

• Algorithms of the second kind: look e.g. at Google. . .

6 / 33



Outline String matching Näıve Automaton Rabin-Karp KMP Boyer-Moore Others

String Matching: Sliding Window Mechanism

• Sliding window: Scan the text by a window of size, which is
generally equal to m

• An attempt: Align the left end of the window with the text and
compare the characters in the window with those of the pattern

• Each attempt (step) is associated with position j in the text
when the window is positioned on yj ..yj+m−1

• Shift the window to the right after the whole match of the pattern
or after a mismatch

Effectiveness of the search depends on the order of comparisons:

1 The order is not relevant (e.g. näıve, or brute-force algorithm)

2 The natural left-to-right order (the reading direction)

3 The right-to-left order (the best algorithms in practice)

4 A specific order (the best theoretical bounds)
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Single Pattern Algorithms (Summary)

Notation:

m – the length (size) of the pattern; n – the length of the searched text

String search algorithm Time complexity for
preprocessing matching

Näıve 0 (none) Θ(n ·m)
Rabin-Karp Θ(m) avg Θ(n+m)

worst Θ(n ·m)
Finite state automaton Θ(m|Σ|) Θ(n)
Knuth-Morris-Pratt Θ(m) Θ(n)
Boyer-Moore Θ(m+ |Σ|) Ω(n/m), O(n)
Bit based (approximate) Θ(m+ |Σ|) Θ(n)

See http://www-igm.univ-mlv.fr/∼lecroq/string for some animations of

these and many other string algorithms
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Näıve (Brute-Force) Algorithm

for ( j = 0; j <= n - m; j++ ) {
for ( i = 0; i < m && x[i] == y[i + j]; i++ );
if ( i >= m ) return j;

}

Main features of this easy (but slow) O(nm) algorithm:

• No preprocessing phase

• Only constant extra space needed

• Always shifts the window by exactly 1 position to the right

• Comparisons can be done in any order

• mn expected text characters comparisons
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Näıve Algorithm: An Example

Pattern: abaa; searched string: ababbaabaaab

ababbaabaaab

abaa________ step 1
_abaa_______ step 2
__abaa______ step 3
___abaa_____ step 4
____abaa____ step 5
_____abaa___ step 6
______abaa__ step 7
_______abaa_ step 8
________abaa step 9

............

ABA# mismatch: 4th letter
_#... mismatch: 1st letter
__AB#. mismatch: 3rd letter
___#... mismatch: 1st letter
____#... mismatch: 1st letter
_____A#.. mismatch: 2nd letter
______ABAA success
_______#... mismatch: 1st letter
________.#..mismatch: 2nd letter

Runs with 9 window steps and 18 character comparisons
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Automaton Based Search

Main features:

• Building the minimal deterministic finite automaton (DFA)
accepting strings from the language L = Σ∗x
• L is the set of all strings of characters from Σ ending with the

pattern x
• Time complexity O(m|Σ|) of this preprocessing (m = |x|, i.e.

the size of x)

• Time complexity O(n) of the search in a string y of size n if
the DFA is stored in a direct access table

• Most suitable for searching within many different strings y for
same given pattern x

x = x0x1x2x3 ⇒

ε
x0

x0x1

x0x1x2

x0x1x2x3

9>>>=>>>;m+ 1 DFA states −→ x = abaa⇒

ε empty
a
ab
aba
abaa

9>>>=>>>;
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Bulding the Minimal DFA for L = Σ∗x

• The DFA (Q,Σ, δ : Q× Σ→ Q, q0 ∈ Q,F ⊆ Q) to recognise
the language L = Σ∗x:
• Q – the set of all the prefixes of x = x0 · · ·xm−1:

Q = {ε, x0, x0x1, . . . , x0 · · ·xm−2, x0 · · ·xm−1}
• q0 = ε – the state representing the empty prefix
• F = {x} – the state representing the pattern(s) x
• δ – the state+character to state transition function

• For q ∈ Q and c ∈ Σ, δ(q, c) = qc if and only if qc ∈ Q
• Otherwise δ(q, c) = p such that p is the longest suffix of qc,

which is a prefix of x (i.e. p ∈ Q)

• Once the DFA is built, searching for the word x in a text y
consists of parsing y with the DFA beginning with the initial
state q0

• Each time a unique final state F is encountered an occurrence
of x is reported
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Automaton Search: x = abaa and y = ababbaabaaab

Σ = {a, b}; Q = {ε, a, ab, aba, abaa}; q0 = ε; F = {x} = {abaa}

Transitions δ(q, c) :
c
q ε a ab aba abaa

a a a aba abaa a

b ε ab ε ab ab

start
ε

c = b

c = a
a

c = a

c = b
ab

c = b

c = a
aba

c = b

c = a abaa

c = b

c = a

See also: http://www.ics.uci.edu/∼eppstein/161/960222.html
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Automaton Search: x = abaa and y = ababbaabaaab

Automaton:

Initial state ε
Final states {abaa}
Transitions
qnext = δ(qcurr, c) =

qcurr \ c a b

ε a ε
a a ab
ab aba ε
aba abaa ab
abaa a ab

Step Text Transition

1 ababbaabaaab ε → a
2 ababbaabaaab a → ab
3 ababbaabaaab ab → aba
4 ababbaabaaab aba → ab
5 ababbaabaaab ab → ε
6 ababbaabaaab ε → a
7 ababbaabaaab a → a
8 ababbaabaaab a → ab
9 ababbaabaaab ab → aba

10 ababbaabaaab aba → abaa
11 ababbaabaaab abaa → a
12 ababbaabaaab a → ab

Runs with 12 steps and 12 character comparisons
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Rabin-Karp Algorithm

Main features:

• Using hashing function
(i.e., it is more efficient to check whether the window contents
“looks like” the pattern than checking exact match)

• Preprocessing phase: time complexity O(m) and constant
space

• Searching phase time complexity:
• O(mn) for worst case
• O(n+m) for expected case

• Good for multiple patterns x being used
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Rabin-Karp Hashing Details

Desirable hashing functions hash(. . .) for string matching:

• Efficiency of computation

• High discrimination for strings

• Easy computation of hash(yj+1..yj+m) from the previous window:
i.e. hash(yj+1..yj+m) = rehash (yj , yj+m,hash(yj ..yj+m−1))

For a word w of length m, let hash(w) be defined as:

hash(w0..wm−1) =
(
w02m−1 + w12m−2 + . . .+ wm−120

)
mod q

where q is a large number. Then rehash(a, b, h) = (2h− a2m + b) mod q

• Preprocessing phase: computing hash(x)
• It can be done in constant space and O(m) time

• Searching phase: comparing hash(x) with hash(yj ..yj+m−1) for
0 ≤ j < n−m
• If an equality is found, still check the equality x = yj ..yj+m−1

character by character
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Rabin-Karp Algorithm

Using external hash and rehash functions:

int RabinKarp(String x, String y)
{

m = x.length();
n = y.length();
hx = hash(x,0,m-1);
hy = hash(y,0,m-1);
for (int j = 0; j <= n - m; j++)
{
if (hx==hy && y.substring(j,j+m-1)==x) return j;
hy = rehash(y[j],y[j+m],hy);
}
return -1; // not found

}
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Rabin-Karp with x = abaa and y = ababbaabaaab

hash(abaa) = 1459 → hx− hash value for pattern x

hy ↓ → hash value for substring y

hash(y0..y3) = 1460 ababbaabaaab
hash(y1..y4) = 1466 ababbaabaaab
hash(y2..y5) = 1461 ababbaabaaab
hash(y3..y6) = 1467 ababbaabaaab
hash(y4..y7) = 1464 ababbaabaaab
hash(y5..y8) = 1457 ababbaabaaab
hash(y6..y9) = 1459 ababbaabaaab : return 6
hash(y7..y10) = 1463 ababbaabaaab
hash(y8..y11) = 1456 ababbaabaaab
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Rabin-Karp Algorithm (searching multiple patterns)

Extending the search for multiple patterns of the same length:

void RabinKarpMult(String[] x, String y)
{

m = x[0].length();
n = y.length();
for( int i = 0; i < x.length; i++ )

hx[i] = hash( x[i], 0, m-1);
hy = hash(y, 0, m-1);
for( int j = 0; j <= n - m; j ++ ) {
for( int k = 0; k < x.length; k++ )

if ( hx[k]==hy && y.substring(j,j+m-1) == x[k] )
matchProcess( k, j );

hy = rehash( y[j], y[j+m], hy );
}

}
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Outline String matching Näıve Automaton Rabin-Karp KMP Boyer-Moore Others

Knuth-Morris-Pratt Algorithm

Searches for occurrences of a pattern x within a main text string y
by employing the simple observation: after a mismatch, the word
itself allows us to determine where to begin the next match to
bypass re-examination of previously matched characters

• Preprocessing phase: O(m) space and time complexity

• Searching phase: O(n+m) time complexity (independent
from the alphabet size)

• At most 2n− 1 character comparisons during the text scan

• The maximum number of comparisons for a single text

character: ≤ logηm where η = 1+
√

5
2 is the golden ratio

The algorithm was invented in 1977 by Knuth and Pratt and
independently by Morris, but the three published it jointly
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Knuth-Morris-Pratt Window Shift Idea

Let offset i; 0 < i < m, be the first mismatched position for a pattern x
matched to the text string y starting at index position j (i.e. x0..xi−1 =
yj ..yj+i−1 = u, but xi = a 6= yj+i = b):

y

x

j i + j

b

c

u

u− v

v

?x

v

v

u

b

matching part of x ! ← mismatch

a

c

The length of the largest substring v being a prefix and suffix of u, which

are followed by different characters (like va and vc above), gives the next

search index next[i]
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Knuth-Morris-Pratt Preprocessing

All the shift distances next[i] can be actually computed for
0 ≤ i ≤ m in total time O(m) where m = |x|

void computeNext( String x, int[] next ) {
int i = 0;
int j = next[0] = -1; // end of window marker
while ( i < x.length() ) {

while ( j > -1 && x[i] != x[j] ) j = next[ j ];
i++;
j++;
if ( x[ i ] == x[ j ] )

next[ i ]= next[ j ];
else next[ i ]= j;

}
}
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Knuth-Morris-Pratt Main Algorithm

The main search runs in time O(n) where n = |y|.

int KMP(String x, String y) {
int m = x.length(); int n = y.length();
int[ m+1 ] next;
computeNext( x, next );
int i = 0; int j = 0; // indices in x and y
while ( j < n ) {
while ( i > -1 && x[i] != y[j] ) i = next[ i ];
i++;
j++;
if ( i >= m ) return j - i; // Match

}
return -1; // Mismatch

}

So the total time of the KMP algorithm is O(m+ n)
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KMP with x = abaa and y = ababbaabaaab

Preprocessing phase:

x a b a a -

i 0 1 2 3 4

next[i] -1 0 -1 1 1

Searching phase:

ababbaabaaab
ABAa Shift by 2 (next[3]=1)

.Ba. Shift by 3 (next[2]=-1)

Ab.. Shift by 1 (next[1]=0)

ABAA Shift by 3 (match found)
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Boyer-Moore Algorithm

Main features of this “best practical choice” algorithm:

• Performing the comparisons from right to left

• Preprocessing phase: O(m+ |Σ|) time and space complexity

• Searching phase: O(m+ n) time complexity;

• 3n text character comparisons in the worst case when
searching for a non periodic pattern

• O(n/m) best performance

Two precomputed functions to shift the window to the right:

• The good-suffix shift (also called matching shift)

• The bad-character shift (also called occurrence shift)
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Good-Suffix (Matching) Shifts

A mismatch xi 6= yj+i for a matching attempt at position j, so that
xi+1..xm−1 = yj+i+1..yj+m−1 = u
The shift: by aligning the segment u in y with its rightmost occurrence
in x that is preceded by a character different from xi:

or if no such segment in x exists, by aligning the longest suffix of u in y
with a matching prefix v of x:

See details in http://www-igm.univ-mlv.fr/∼lecroq/string/index.html
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Bad-Character (Occurrence) Shifts

A mismatch xi 6= yj+i for a matching attempt at position j, so that
xi+1..xm−1 = yj+i+1..yj+m−1 = u
The shift: by aligning the text character yi+j with its rightmost
occurrence in x0..xm−2:

or if yj+i does not occur in x, the left end of the window is aligned with
the character yj+i+1 immediately after yj+i:

See details in http://www-igm.univ-mlv.fr/∼lecroq/string/index.html
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Boyer-Moore with x = abaa and y = ababbaabaaab

Bad-character shifts Bc[a]=1 and Bc[b]=2.
Good-suffix shifts Gs are 3, 3, 1, and 2, respectively.

ababbaabaaab

...a Shift by 2

..aA Shift by 1

aBAA Shift by 3

ABAA Shift by 3
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Shift-AND Matching Algorithm

Also known as the Baeza-Yates–Gonnet algorithm and is related
to the Wu-Manber k-differences algorithm.

The main features of this bit based algorithm are:

• efficient if the pattern length is no longer than the
memory-word size of the machine;

• preprocessing phase in O(m+ |Σ|) time and space complexity;

• searching phase in O(n) time complexity;

• adapts easily to approximate string matching.
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Shift-AND Matching Algorithm (continued)

Algorithm uses (for fixed i) a state vector ŝ, where

s[j] = 1 iff y[i− j, . . . , i] = x[0, . . . , j]

For c ∈ Σ let T [c] be a (Boolean) bit vector of length m = |x| that
indicates where c occurs in x.
The next state vector at postions i+ 1 is computed very fast:

ŝ = ((ŝ << 1) + 1) & T [y[i+ 1]]

A match is found whenever s[m− 1] = 1.
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Shift-AND with X=abaa and Y=ababbaabaaab

The character vectors for the pattern x are:

x \ T [] a b

a 1 0
b 0 1
a 1 0
a 1 0

The main search progresses as follows:

x \ s[] a b a b b a a b a a a b

a 1 0 1 0 0 1 1 0 1 1 1 0
b 0 1 0 1 0 0 0 1 0 0 0 1
a 0 0 1 0 0 0 0 0 1 0 0 0
a 0 0 0 0 0 0 0 0 0 1 0 0
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Wu-Manber Approximation Matching Algorithm

The Shift-AND algorithm can be modified to detect string
matching with at most k errors (or k differences).

The possibilities for matching x[0, . . . , j] with a substring of y that
ends at position i with e errors:

1 Match: x[j] = y[i] and a match with e errors between
x[0, . . . , j − 1] and a substring of y ending at i− 1.

2 Substitution: a match with e− 1 errors between
x[0, . . . , j − 1] and a substring of y ending at i− 1.

3 Insertion: a match with e− 1 errors between x[0, . . . , j] and a
substring of y ending at i− 1.

4 Deletion: a match with e− 1 errors between x[0, . . . , j − 1]
and a substring of y ending at i.
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Wu-Manber State Update Procedure

We introduce new state vectors ŝe that represent the matches
where 0 ≤ e ≤ k errors have occurred. [Note: ŝ = ŝ0.]

The state updating is a generalization of the Shift-AND rule:

s′e = (((se << 1) + 1) AND T [y[i+ 1]]) OR
((se−1 << 1) + 1) OR
((s′e−1 << 1) + 1) OR
se−1

Here, the s∗ and s′∗ denote the state at character position i and
i+ 1, respectively, of the text string y

The OR’s in the above rule account for the 4 possible ways to
approximate the pattern with errors
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