

String Matching Algorithms

Georgy Gimel'farb

(with basic contributions from M. J. Dinneen, Wikipedia, and web materials by

Ch. Charras and Thierry Lecroq, Russ Cox, David Eppstein, etc.)

COMPSCI 369 Computational Science

- 1 String matching algorithms
- 2 Naïve, or brute-force search
- **3** Automaton search
- 4 Rabin-Karp algorithm
- **5** Knuth-Morris-Pratt algorithm
- **6** Boyer-Moore algorithm
- **7** Other string matching algorithms

Learning outcomes: Be familiar with string matching algorithms

Recommended reading:

http://www-igm.univ-mlv.fr/~lecroq/string/index.html

C. Charras and T. Lecroq: Exact String Matching Algorithms. Univ. de Rouen, 1997

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

String matching or searching algorithms try to find places where one or several strings (also called **patterns**) are found within a larger string (**searched text**):

..._try_to_find_places_where_one_or_several_strings_(also... PATTERN: ace

..._try_to_find_places_where_one_or_several_strings_(also...

Formally, both the pattern and searched text are concatenation of elements of an **alphabet** (finite set) Σ

- Σ may be a usual human alphabet, for example, the Latin letters a through z or Greek letters α through ω
- Other applications may include binary alphabet, $\Sigma = \{0, 1\}$, or DNA alphabet, $\Sigma = \{A, C, G, T\}$, in bioinformatics

Outline

String matching

Naïve

Automaton

Rabin-Karp

ΚN

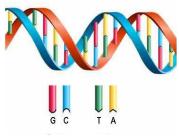
Boyer-Moore

Others

String Searching: DNA alphabet

DNA alphabet contains only four "letters", forming fixed pairs in the double-helical structure of DNA

- A adenine: A pairs with T
- C cytosine: C pairs with G
- G guanine: G pairs with C
- T thymine: T pairs with A



http://www.biotechnologyonline.gov.au/
popups/img_helix.html

GAATTCTCTTTGGTATCCAATGAAGAAATCGAATCCATACCCATAGCTATAAAAAAACAT TTCAGGAGAAAATAAGACCGAAGCTGCTCAATTAGGCGCAATTGATTCGTTTCAAAAAT GTGAAACTTGCCAGCTTACTTCGGCATGTCCTGGTCATTTTGGAAAATTTCATCTTACT CAACCATTATTTAAAGTCGCATTTAAAAAACTTGTTGAAAATATTTTTAAATATACTTG TTCTTTCTGTGGTGCTTTACAAAATCTTGAACTTCTGGAATTGATCAAGCAGATAGACG AACGAAATACTGGAATAACAGTTAAAGATCGTGCTGCTTTTAAAAAAATTTTAGAAGCT ACCAAACAAAGCAAATTCAAGTGTATTGCACCTAATTGCCAAAAACAAGTCTCTCCTTT ACAATATTCGAAAAATAATAACTTTATATATATATCGGGTACTACAAAGGGTATAGTTT TGGATAACAGGCATGTGTTTAATATCTTACAAAATCTTCCACAAACGTTTAAATTATTG TTAACCCCTTCGAATGCTCATCAAATCGTATCTCCCCGAAAATGTCTTTTATGCTAATAG TATCTTACTTCCACCACATAATCTACGAACTATCAATGTTTATGATGGTCAGGTTACGA GTTTGTTAACAAGTGATTTGAATCTGATAATGCGAAGAGTTGCTAATAATGAGACAAAT GCAAAAATACAAAAATCTTGGATTCTATCGATAACAGCCGAGGTGCCAATCCATATGC TACAAATAAAAAGCTTACTTTGGATACTTTGACAGGTGGACACTCAAAAGAATCTTATT TGCGAAGTTATATTAATGGCAAACGTATTCCTGAGACTGCCAGAGCTGTAATCGAACCC TCTATGAATAAAACTGGCTTTATTGAAGTACCATCTTACATTTTAAACAAGTTAAGAGA TGTTGTCTTTTATAATCACGTTACGAAAGATAACATACTCAAAAGTCTTCAAAACGAAC AAGCTTTTCTAACATATATCAAAAGTGATCATAATTCTGAAAAATCCTTATATGGTTTAT GATTTAGCACAGAAGAATGGATATTTAACCTTGGCTCCTAATTTCGGTGATATTTTCGA CTAATATCCAATCTGGTATAATAAAAAGATCAGAAGGGTTTACTATTAACATCCCAACC ACAATTTGCACATCTTTTAATGCTGATTTTGATGGAGATGAGATGACAATATATTCTTT CAAATCCCCATGTGCCAATCTCGAACAAGCTTTGATTATGAACTCACGAAATCTCTTCA AAAATTCTATAACAAGCAATCCAATGTTCGGCTTGGTCCAAGATCAAATACCAGCCTTG AATAAGTTATATAGACGACAAAATTATACATATAACGATGCGTTGGTGATTTTAGGACA ATTCGGATTTCTGTTAACACCTGGAAAAGATAATTATACCGGAAAAGATATACTTTCTT GTGTATTCCCAAAACATTATACACTCAAAGGAATTGTTGAAAATGGCGAACTTATTTTG GAGAATTTTACAAATAAACTCGTTTCCGCAAATTCCTCAAAGTCCATCTTTGGGCATCT TGTTTTATTTATGGACAAGAGTATGGTTTGACTATATTGGATACAATGCGAGATATTG TTCAAAATTTTATTACACATTTTGGTTTCAGTGTAAAAATCCGAGATATGATCCCAAGC CCAAAAAATTTTGGATATTCTAGAAAAGATCGTAGACCAAGAAGTGGATAAAATTGATAA ACAAACAAAACTTCTATATGACGATATCGAACAAGGTAAGGTTATAATCAACTCTTATG ATGATATTTCTGAGTTCAGATTAAAAAATGTGGCTATTATGAAAAAGAAACTAGAAAGC AAACTTTTGGAACTTTTGGATGAATATTATGATGAAGACAATAATTTCCTAGAGATGTA TAGAACGGGATATAAGGTCAACATTAACGAACTTCTCTCTATTATGTGTTTCTCGGGTT TTAAAAATTATGGAAATATCGAAATGATTACACCGGGTCTTAATGGTAAAACATCTTTG TTTAGCTTACCAGATTCTATAAACTTACAAGATTATGGGTTCATCAAAAGCTCTATTGC CAAAGGGTTAACGTTTGAAGAATATGCTACAATCGTAAAACAAGAAGCTTTTCCACAAA TTGTTAATGTTACAACTGGTACTTCACAAACAGGATTTTTGGGGGAAAAAAATGGTTAAA ATGGCTTCTGAATTC

http://www.insectscience.org/2.10/ref/fig5a.gif

- ・ロ・・雪・・雪・・雪・ 今今や
 - 4/33

Outline

String matching

Naïve

Automaton

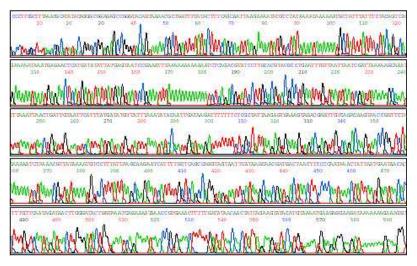
Rabin-Kar

arp KMP

Boyer-Moore

Others

String Searching: DNA alphabet



http://biology.kenyon.edu/courses/biol114/Chap08/longread_sequence.gif

5/33

 $\tt http://www-igm.univ-mlv.fr/{\sim}lecroq/string/index.html$

String matching: Find one, or more generally, all the occurrences of a pattern $x = [x_0x_1..x_{m-1}]$; $x_i \in \Sigma$; i = 0, ..., m-1, in a text (string) $y = [y_0y_1..y_{n-1}]$; $y_j \in \Sigma$; j = 0, ..., n-1

- Two basic variants:
 - Given a pattern, find its occurrences in any initially unknown text
 - Solutions by preprocessing the pattern using finite automata models or combinatorial properties of strings
 - 2 Given a text, find occurrences of any initially unknown pattern
 - Solutions by indexing the text with the help of trees or finite automata
- In COMPSCI 369: only algorithms of the first kind
- Algorithms of the second kind: look e.g. at Google...

Others

String Matching: Sliding Window Mechanism

- Sliding window: Scan the text by a window of size, which is generally equal to \boldsymbol{m}
- An attempt: Align the left end of the window with the text and compare the characters in the window with those of the pattern
 - Each attempt (step) is associated with position j in the text when the window is positioned on $y_j ... y_{j+m-1}$
- Shift the window to the right after the whole match of the pattern or after a mismatch

Effectiveness of the search depends on the order of comparisons:

- 1 The order is not relevant (e.g. naïve, or brute-force algorithm)
- **2** The natural left-to-right order (the reading direction)
- **3** The right-to-left order (the best algorithms in practice)
- ④ A specific order (the best theoretical bounds)

Single Pattern Algorithms (Summary)

Notation:

 $m\ -\ {\rm the\ length\ (size)}$ of the pattern; $n\ -\ {\rm the\ length\ of\ the\ searched\ text}$

String search algorithm	Time complexity for				
	preprocessing	matching			
Naïve	0 (none)	$\Theta(n \cdot m)$			
Rabin-Karp	$\Theta(m)$	$\operatorname{avg}\Theta(n+m)$			
		worst $\Theta(n\cdot m)$			
Finite state automaton	$\Theta(m \Sigma)$	$\Theta(n)$			
Knuth-Morris-Pratt	$\Theta(m)$	$\Theta(n)$			
Boyer-Moore	$\Theta(m+ \Sigma)$	$\Omega(n/m)$, $O(n)$			
Bit based (approximate)	$\Theta(m+ \Sigma)$	$\Theta(n)$			

See http://www-igm.univ-mlv.fr/~lecroq/string for some animations of these and many other string algorithms

Main features of this easy (but slow) O(nm) algorithm:

- No preprocessing phase
- Only constant extra space needed
- Always shifts the window by exactly 1 position to the right
- Comparisons can be done in any order
- mn expected text characters comparisons

Naïve Algorithm: An Example

Pattern: abaa; searched string: ababbaabaaab

ababbaabaaab

• • • • • • • • • •

abaa	step 1	ABA#	mismatch:	4th letter
_abaa	step 2	_#	mismatch:	1st letter
abaa	step 3	AB#.	mismatch:	3rd letter
abaa	step 4	#	mismatch:	1st letter
abaa	step 5	#	mismatch:	1st letter
abaa	step 6	A#	mismatch:	2nd letter
abaa	step 7	ABAA	success	
abaa_	step 8	#	mismatch:	1st letter
abaa	step 9	#.	.mismatch:	2nd letter

Runs with 9 window steps and 18 character comparisons

Main features:

- Building the minimal deterministic finite automaton (DFA) accepting strings from the language $L = \Sigma^* x$
 - L is the set of all strings of characters from Σ ending with the pattern \boldsymbol{x}
 - Time complexity $O(m|\Sigma|)$ of this preprocessing (m = |x|, i.e. the size of x)
- Time complexity ${\cal O}(n)$ of the search in a string y of size n if the DFA is stored in a direct access table
- Most suitable for searching within many different strings y for same given pattern x

$$\left. \begin{array}{c} \epsilon \\ x_0 \\ x = x_0 x_1 x_2 x_3 \Rightarrow \begin{array}{c} x_0 x_1 \\ x_0 x_1 x_2 \\ x_0 x_1 x_2 x_3 \end{array} \right\} m + 1 \text{ DFA states} \longrightarrow x = abaa \Rightarrow ab \\ abaa \\ abaa \\ abaa \end{array} \right\}$$

Outline String matching Naïve Automaton Rabin-Karp KMP Boyer-Moore Others

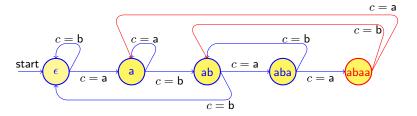
- Bulding the Minimal DFA for $L = \Sigma^* x$
 - The DFA $(Q, \Sigma, \delta: Q \times \Sigma \to Q, q_0 \in Q, F \subseteq Q)$ to recognise the language $L = \Sigma^* x$:
 - Q the set of all the prefixes of $x = x_0 \cdots x_{m-1}$:

$$Q = \{\epsilon, x_0, x_0x_1, \dots, x_0 \cdots x_{m-2}, x_0 \cdots x_{m-1}\}$$

- $q_0 = \epsilon$ the state representing the empty prefix
- $F = \{x\}$ the state representing the pattern(s) x
- δ the state+character to state transition function
 - For $q\in Q$ and $c\in \Sigma,$ $\delta(q,c)=qc$ if and only if $qc\in Q$
 - Otherwise $\delta(q,c) = p$ such that p is the longest suffix of qc, which is a prefix of x (i.e. $p \in Q$)
- Once the DFA is built, searching for the word x in a text y consists of parsing y with the DFA beginning with the initial state q_0
- Each time a unique final state F is encountered an occurrence of x is reported

$$\Sigma = \{\mathsf{a},\mathsf{b}\}; \ Q = \{\epsilon,\mathsf{a},\mathsf{ab},\mathsf{aba},\mathsf{abaa}\}; \ q_0 = \epsilon; \ F = \{x\} = \{\mathsf{abaa}\}$$

	c^q	ϵ	а	ab	aba	abaa
Transitions $\delta(q,c)$:	а	а	а	aba	abaa	а
	b	ϵ	ab	ϵ	ab	ab



See also: http://www.ics.uci.edu/~eppstein/161/960222.html

13/33

э

Automaton Search: x = abaa and y = ababbaabaaab

Automaton:

,			Step	Text	TRANSITION		ION
Initial state	$\epsilon \epsilon$		1	ababbaabaaab	ϵ	\rightarrow	а
Final states	s {abaa	}	2	<u>a</u> babbaabaaab	а	\rightarrow	ab
Transitions		,	3	<u>ab</u> abbaabaaab	ab	\rightarrow	aba
			4	<u>aba</u> bbaabaaab	aba	\rightarrow	ab
$q_{\rm next} = \delta(q$	(curr, c)	=	5	ab <u>ab</u> baabaaab	ab	\rightarrow	ϵ
$q_{\mathrm{curr}} \setminus c$	а	b	6	ababb <mark>a</mark> abaaab	ϵ	\rightarrow	а
Tean (7	ababb <u>a</u> abaaab	а	\rightarrow	а
ϵ	а	ϵ	8	ababba <u>a</u> baaab	а	\rightarrow	ab
а	а	ab	9	ababba <u>ab</u> aaab	ab	\rightarrow	aba
ab	aba	ϵ	10	ababba <u>aba</u> ab	aba	\rightarrow	abaa
aba	abaa	ab	11	ababba <mark>abaa</mark> ab	abaa	\rightarrow	а
abaa		ab	12	ababba <mark>abaa<u>a</u>b</mark>	а	\rightarrow	ab
avad	a	aD		•			

Runs with 12 steps and 12 character comparisons

Main features:

- Using hashing function

 (i.e., it is more efficient to check whether the window contents
 "looks like" the pattern than checking exact match)
- Preprocessing phase: time complexity ${\cal O}(m)$ and constant space
- Searching phase time complexity:
 - O(mn) for worst case
 - O(n+m) for expected case
- Good for multiple patterns x being used

Rabin-Karp Hashing Details

Desirable hashing functions ${\rm hash}(\ldots)$ for string matching:

- Efficiency of computation
- High discrimination for strings
- Easy computation of $hash(y_{j+1}..y_{j+m})$ from the previous window: i.e. $hash(y_{j+1}..y_{j+m}) = rehash(y_j, y_{j+m}, hash(y_j..y_{j+m-1}))$

For a word w of length m, let hash(w) be defined as:

 $\operatorname{hash}(w_0..w_{m-1}) = \left(w_0 2^{m-1} + w_1 2^{m-2} + \ldots + w_{m-1} 2^0\right)_{\mod q}$

where q is a large number. Then rehash $(a, b, h) = (2h - a2^m + b) \mod q$

- Preprocessing phase: computing hash(x)
 - It can be done in constant space and ${\cal O}(m)$ time
- Searching phase: comparing hash(x) with $hash(y_j..y_{j+m-1})$ for $0 \le j < n-m$
 - If an equality is found, still check the equality $x = y_j .. y_{j+m-1}$ character by character

Using external hash and rehash functions:

```
int RabinKarp(String x, String y)
ſ
 m = x.length();
  n = y.length();
  hx = hash(x, 0, m-1);
  hy = hash(y,0,m-1);
  for (int j = 0; j <= n - m; j++)
  Ł
   if (hx==hy && y.substring(j,j+m-1)==x) return j;
   hy = rehash(y[i], y[i+m], hy);
  }
  return -1; // not found
}
```


Rabin-Karp with x = abaa and y = ababbaabaaab

hash(abaa)	=	1459	\rightarrow	hx - hash value for pattern x				
		hy \downarrow	\rightarrow	hash value for substring y				
$\operatorname{hash}(y_0y_3)$	=	1460		ababbaabaaab				
$\operatorname{hash}(y_1y_4)$	=	1466		ababbaabaaab				
$\operatorname{hash}(y_2y_5)$	=	1461		ababbaabaaab				
$\operatorname{hash}(y_3y_6)$	=	1467		ababbaabaaab				
$\operatorname{hash}(y_4y_7)$	=	1464		ababbaabaaab				
$\operatorname{hash}(y_5y_8)$	=	1457		ababbaabaaab				
$\operatorname{hash}(y_6y_9)$	=	1459		ababba <mark>abaa</mark> ab : return 6				
$hash(y_7y_10)$	=	1463		ababbaabaaab				
$hash(y_8y_11)$	=	1456		ababbaabaaab				

Outline String matching Naïve Automaton Rabin-Karp KMP Boyer-Moore Others

Rabin-Karp Algorithm (searching multiple patterns)

```
Extending the search for multiple patterns of the same length:
void RabinKarpMult(String[] x, String y)
ſ
 m = x[0].length();
  n = y.length();
  for( int i = 0; i < x.length; i++ )
     hx[i] = hash(x[i], 0, m-1);
  hy = hash(y, 0, m-1);
  for( int j = 0; j <= n - m; j ++ ) {</pre>
    for( int k = 0; k < x.length; k++ )
      if (hx[k]==hy \&\& y.substring(j,j+m-1) == x[k])
                                    matchProcess( k, j );
        hy = rehash(y[j], y[j+m], hy);
    }
}
                                      ・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう
```


Searches for occurrences of a pattern x within a main text string y by employing the simple observation: after a mismatch, the word itself allows us to determine where to begin the **next match** to bypass re-examination of previously matched characters

- Preprocessing phase: O(m) space and time complexity
- Searching phase: O(n+m) time complexity (independent from the alphabet size)
- At most 2n-1 character comparisons during the text scan
- The maximum number of comparisons for a single text character: $\leq \log_{\eta} m$ where $\eta = \frac{1+\sqrt{5}}{2}$ is the golden ratio

The algorithm was invented in 1977 by Knuth and Pratt and independently by Morris, but the three published it jointly

Let offset i; 0 < i < m, be the first mismatched position for a pattern x matched to the text string y starting at index position j (i.e. $x_0...x_{i-1} =$ $y_{i}..y_{i+i-1} = u$, but $x_{i} = a \neq y_{i+i} = b$): i+jy . ← mismatch matching part of xxа 1) 1) n - nX

The length of the largest substring v being a prefix and suffix of u, which are followed by different characters (like va and vc above), gives the next search index next[i]

```
OutlineString matchingNaïveAutomatonRabin-KarpKMPBoyer-MooreOthersKnuth-Morris-Pratt PreprocessingAll the shift distances next[i] can be actually computed for<br/>0 \le i \le m in total time O(m) where m = |x|<br/>void computeNext( String x, int[] next ) {
```

```
int i = 0;
int j = next[0] = -1; // end of window marker
while ( i < x.length() ) {</pre>
    while (j > -1 \&\& x[i] != x[j]) j = next[j];
    i++;
    j++;
    if ( x[ i ] == x[ j ] )
              next[ i ]= next[ j ];
    else next[ i ]= j;
 }
}
                                      ▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで
```

Outline String matching Naïve Automaton Rabin-Karp KMP Boyer-Moore Others
Knuth-Morris-Prott Main Algorithm

Knuth-Morris-Pratt Main Algorithm

```
The main search runs in time O(n) where n = |y|.
```

```
int KMP(String x, String y) {
 int m = x.length(); int n = y.length();
 int[ m+1 ] next;
computeNext( x, next );
 int i = 0; int j = 0; // indices in x and y
 while (j < n) {
  while (i > -1 \&\& x[i] != y[j]) i = next[i];
  i++;
  j++;
  if ( i \ge m ) return j - i; // Match
7
return -1; // Mismatch
}
```

So the total time of the KMP algorithm is O(m+n)

Outline String matching Naïve Automaton Rabin-Karp KMP Boyer-Moore Others

KMP with x = abaa and y = ababbaabaaab

Preprocessing phase:

x	а	b	а	а	-
i	0	1	2	3	4
next[i]	-1	0	-1	1	1

Searching phase:

ababbaabaaab ABAa Shift by 2 (next[3]=1)

.Ba. Shift by 3 (next[2]=-1)

Ab.. Shift by 1 (next[1]=0)

ABAA Shift by 3 (match found)

Main features of this "best practical choice" algorithm:

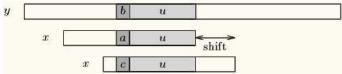
- Performing the comparisons from right to left
- Preprocessing phase: $O(m + |\Sigma|)$ time and space complexity
- Searching phase: O(m+n) time complexity;
- 3*n* text character comparisons in the worst case when searching for a non periodic pattern
- O(n/m) best performance

Two precomputed functions to shift the window to the right:

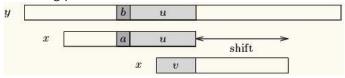
- The good-suffix shift (also called matching shift)
- The bad-character shift (also called occurrence shift)

A mismatch $x_i \neq y_{j+i}$ for a matching attempt at position j, so that $x_{i+1}..x_{m-1} = y_{j+i+1}..y_{j+m-1} = u$

The shift: by aligning the segment u in y with its rightmost occurrence in x that is preceded by a character different from x_i :

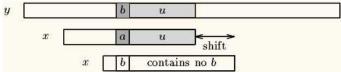


or if no such segment in x exists, by aligning the longest suffix of u in y with a matching prefix v of x:

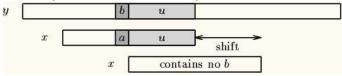


See details in http://www-igm.univ-mlv.fr/~lecroq/string/index.html

A mismatch $x_i \neq y_{j+i}$ for a matching attempt at position j, so that $x_{i+1}..x_{m-1} = y_{j+i+1}..y_{j+m-1} = u$ The shift: by aligning the text character y_{i+j} with its rightmost occurrence in $x_0..x_{m-2}$:



or if y_{j+i} does not occur in x, the left end of the window is aligned with the character y_{j+i+1} immediately after y_{j+i} :



Boyer-Moore with x = abaa and y = ababbaabaaab

Bad-character shifts Bc[a]=1 and Bc[b]=2. Good-suffix shifts Gs are 3, 3, 1, and 2, respectively.

ababbaabaaab

a	Shift by 2
aA	Shift by 1
aBAA	Shift by 3
ABAA	Shift by 3

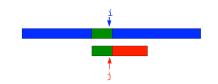
Also known as the **Baeza-Yates–Gonnet** algorithm and is related to the **Wu-Manber** k-differences algorithm.

The main features of this bit based algorithm are:

- efficient if the pattern length is no longer than the memory-word size of the machine;
- preprocessing phase in $O(m + |\Sigma|)$ time and space complexity;
- searching phase in O(n) time complexity;
- adapts easily to approximate string matching.

Algorithm uses (for fixed i) a state vector \hat{s} , where

$$s[j] = 1$$
 iff $y[i - j, \dots, i] = x[0, \dots, j]$



For $c \in \Sigma$ let T[c] be a (Boolean) bit vector of length m = |x| that indicates where c occurs in x.

The next state vector at postions i + 1 is computed very fast:

$$\hat{s} = ((\hat{s} << 1) + 1) \& T[y[i+1]]$$

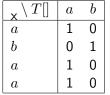
A match is found whenever s[m-1] = 1.

30 / 33

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Shift-AND with X=abaa and Y=ababbaabaaab

The character vectors for the pattern x are:



The main search progresses as follows:

$[\times \setminus s[]$	a	b	a	b	b	a	a	b	a	a	a	b
a										1		
b	0	1	0	1	0	0	0	1	0	0	0	1
a										0		
a										1		

▲□ > ▲圖 > ▲ 国 > ▲ 国 > ― 国 ― の Q @

31/33

Wu-Manber Approximation Matching Algorithm

The **Shift-AND** algorithm can be modified to detect string matching with at most k errors (or k differences).

The possibilities for matching $x[0, \ldots, j]$ with a substring of y that ends at position i with e errors:

- **1** Match: x[j] = y[i] and a match with e errors between $x[0, \ldots, j-1]$ and a substring of y ending at i-1.
- 2 Substitution: a match with e-1 errors between $x[0, \ldots, j-1]$ and a substring of y ending at i-1.
- **3** Insertion: a match with e-1 errors between $x[0, \ldots, j]$ and a substring of y ending at i-1.
- ④ Deletion: a match with e − 1 errors between x[0,..., j − 1] and a substring of y ending at i.

We introduce new state vectors $\hat{s_e}$ that represent the matches where $0 \le e \le k$ errors have occurred. [Note: $\hat{s} = \hat{s_0}$.]

The state updating is a generalization of the Shift-AND rule:

$$\begin{array}{lll} s'_{e} & = & (((s_{e} << 1)+1) \; \textbf{AND} \; T[y[i+1]]) \; \textbf{OR} \\ & & ((s_{e-1} << 1)+1) \; \textbf{OR} \\ & & ((s'_{e-1} << 1)+1) \; \textbf{OR} \\ & & s_{e-1} \end{array}$$

Here, the s_{\ast} and s'_{\ast} denote the state at character position i and i+1, respectively, of the text string y

The OR's in the above rule account for the 4 possible ways to approximate the pattern with errors