
17 Multiple sequence alignments (MSA)

In pairwise alignment, we were given two sequences, x and y and wanted to align them by
judiciously inserting gaps so that homologous residues were lined up with one another.

Multiple alignment is similar except now we have k � 3 sequences to align, so we want
to form columns of homologous residues by adding gaps to each sequence.

Experts can construct multiple alignments by hand by considering a number of factors
like secondary and tertiary protein structure, highly conserved regions, patterns of gaps,
evolutionary processes etc. This is, however, subjective, di�cult and tedious.

We want to come up with a method that is probabilistic, automatic and produces align-
ments that experts are happy with.

A good entry point to understanding the problem of global alignment is the Phylo puzzle
game at http://phylo.cs.mcgill.ca/ where you work on short multiple alignments
by hand.

17.1 Dynamic programming

It is tempting to try to extend the dynamic programming methods that we used for
pairwise alignments to the MSA problem. It is relatively easy to write down the naive
extension of pairwise alignment algorithms to more than 2 sequences. But the naive
implementation quickly becomes impossible as the number of sequences and the length
of the sequences increases.

For example, for 2 sequences of length L, the Needleman-Wunsch algorithm requires a
2-dimensional array with L2 cells in total to be stored in memory. The MSA analogue on
n sequences requires storing an n-dimensional array containing Ln cells in total. Even
for short sequences of L = 100, we would require memory for 1005 = 1010 cells (at 4
bytes per cell, that’s about 37 GB).

Some clever work from Lipman, Altschul and Kececioglu (the first two co-wrote BLAST)
managed to reduce the size of the space that needs to be considered. That is, instead
of calculating all Ln cells, they calculate upper and lower bounds on the score of the
best MSA and then need only calculate the cells in the n-dimensional array that will
produce scores lying between these two bounds. This work allows a few sequences (5-10)
of moderate length (300 residues) and not too far diverged to be optimally aligned but
even this requires a large computational resource.

17.2 Progressive alignment

Finding the optimal MSA is computationally prohibitive, as discussed in the previous
Section. Typically, we resort to finding a good-enough alignment using heuristic tech-
niques. The most widely used heuristic is progressive alignment.

Progressive alignment involves a series of successive pairwise alignments. At it’s most
basic, an initial pair of sequences are chosen and aligned, a third is chosen and aligned to

85

the first two and so on until all sequences are included in the MSA. Other methods also
allow the aligning of two alignments to each other. For example, if there are 4 sequences,
two pairs may be aligned first then the two alignments aligned to complete the MSA.

These methods require that we can: decide on an order in which to align the sequences,
align two sequences together, align a sequences to a MSA and align two MSAs together.

The typical way to decide on the order in which to align the sequences is to build a guide
tree, using a clustering methods such as UPGMA, and align sequences in the order that
nodes occur from the leaves to the root of the tree.

17.3 Building trees with distances and UPGMA

UPGMA is a method of building trees based on distances: we are given a set of objects,
and for each pair of objects we have some measure of the distance between them.

UPGMA stands for unweighted pair group method using arithmetic averages and is a
simple method with an ugly name. The idea can be thought of as a clustering algorithm
where we start with all individual sequences and start clustering them together, building
the tree up from the leaves to the root. The height of the internal nodes (or, equivalently,
the edge lengths) is determined by the distances between the two clusters being joined.

For two sequences, x and y, we assume we have a method of defining the distance dxy.
We define the distance between two clusters of sequences, Ci and Cj as the average
distance between all pairs between clusters:

dij =
1

|Ci||Cj |
X

x2Ci,y2Cj

dxy

where |C| is the number of sequences in cluster C.

We define the algorithm as follows:

Initialise Assign each sequence i to it’s own cluster Ci. Assign a leaf node to each
cluster and give it height 0.

Repeat until there only one cluster remains Find clusters Ci and Cj such that
dij is minimal (choose randomly between equidistant candidates).

Join i and j to make the new cluster Ck = Ci [Cj .

Define a node k in the tree placed at height dij/2 with child nodes i and j.

Update the distance matrix.

This procedure results in a well-defined tree (we need to check that all node heights
are above the heights of the their children). The algorithm is quadratic (O(n2)) in the
number of sequences.

86

Example: Given 4 sequences, A,B,C and D, which have the pairwise distances given
by the distance matrix d below, construct the UPGMA tree.

d =

A B C D
A � 4 8 8
B � 8 8
C � 6
D �

Solution: Start by assigning leaf nodes to each of the sequences with height 0:

A B C D
0

Now choose the pair of clusters that are closest to each other according to the distance
matrix d. This is the pair (A,B) with distance d(A,B) = 4. Join the cluster E =
A [B = {A,B} which has height d(A,B)/2 = 2.

A B C D

E

0

1

2

The distance matrix is by calculating d(E,C) and d(E,D). d(E,C) = 1
2·1(d(A,C) +

d(B,C)) = 1
2(8 + 8) = 8 and similarly for d(E,D).

E C D
E � 8 8
C � 6
D �

Now form the cluster F = {C,D} and place the node at d(C,D)/2 = 3.

A B C D

E

F

0

1

2

3

The distance matrix is now the single distance between the remaining clusters: d(E,F) =
1
2·2(d(A,C) + d(A,D) + d(B,C) + d(B,D)) = 1

4(8 + 8 + 8 + 8) = 8. So make the last
node G = {E,F} and place it at height 8/2 = 4. The UPGMA tree is thus

87

A B C D

E

F

G

0

1

2

3

4

⇤

17.4 Feng-Doolittle progressive alignment

The Feng-Doolittle algorithm (1987) takes the approach described above. The steps for
aligning n sequences are as follows.

1. Calculate the n(n� 1)/2 distances between all sequences pairs. The distances are
found by aligning each pair and recording a normalized score. The score used is

D = � logSeff = � log
Sobs � Srand

Smax � Srand

where Sobs is the score from the pairwise alignment, Smax is the average of scores
obtained by aligning each sequences of the pair to itself and Srand is the expected
score for an alignment of the pair when the residues are randomly shu✏ed. The
e↵ective score Seff can thus be viewed as a normalised percentage similarity which
roughly decays exponentially towards zero with increasing evolutionary distance.
Thus, we take � log to make the score decay approximately linearly with evolu-
tionary distance.

2. Build a guide tree based on the recorded scores (we use UPGMA).

3. Build the alignment in the order that nodes were added to the tree.

A pair of sequences is aligned in the normal way. A sequence is aligned to an MSA by
aligning it to each sequence in the MSA and choosing the highest scoring alignment.
Two alignments are aligned to each other by aligning all pairs of sequences between the
two groups and choosing the best alignment.

After a sequence or group of sequences is added to an alignment, the introduced gap
characters are replaced with a neutral X character which can be aligned to any other
character (gap or residue) with no cost. Crucially, there is no penalty for aligning a gap
to an X which tends to make gaps align with each other, giving us the characteristic
pattern we see in multiple alignments of gaps clustered in columns.

Once the initial MSA has been found, we can use further heuristics to improve it and
lessen any e↵ect of the order in which sequences were added. For example, we can choose

88

a sequence uniformly at random, remove it from the MSA and then realign it to the the
MSA. This process can be iterated until the MSA becomes stable, that is, no or very
few changes occur when a sequence is removed and re-aligned

89

	Introduction to genetics and genetic terminology
	Summary of above

	Introduction to stochastic processes and probability
	Primer on Probability
	Axioms of probability
	Conditional probability and independence
	Bayes' Theorem
	Random variables
	Commonly used distributions
	Bernoulli distribution
	Geometric distribution
	Binomial distribution
	Poisson distribution
	Uniform distribution (discrete or continuous)
	Normal distribution
	Exponential distribution
	Gamma distribution

	Entropy

	Inference
	Bayesian inference
	Maximum likelihood

	Simulation
	Random number generation
	Linear congruential generators
	Shift register generators

	Simulating from univariate distributions via Inversion sampling
	Stochastic processes
	Random walk
	Poisson process

	Markov chains
	Alignment
	Homology
	Pairwise alignment
	Scoring alignments
	Model of non-homologous sequences
	Model of homologous sequences

	Choosing the substitution matrix
	Scoring gaps

	Global alignment: Needleman-Wunsch algorithm
	Elements of an alignment algorithm
	Local Alignment: Smith Waterman algorithm
	Overlap matches

	Pairwise alignment with non-linear gap penalties
	Alignment with affine gap scores
	Linear space alignment

	Multiple sequence alignments (MSA)
	Dynamic programming
	Progressive alignment
	Building trees with distances and UPGMA
	Feng-Doolittle progressive alignment

	Hidden Markov Models
	The Viterbi algorithm for finding the most probable state path

