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Programming in Logic: Prolog


Solving the 8-Puzzle

Readings: 11.1-2
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Types of Puzzles

•  The puzzles we’ve seen so far have involved

 inferring new facts about a state that are
 consistent with the given facts and some
 “rules” about the domain.


•  Going to look at a puzzle, where the question is
 to find some sequence of actions/states which
 lead from an initial state to a goal state.
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State Space

                     I


          S1               S2


     S3        S4        S5


S6    S7  S8    S9


Initial State


Goal State


Solution = [I, S1, S4, S9]


Action
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8 Puzzle
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 1   2   3    
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Initial
 State


Goal
 State


Find a sequence of actions/states
 that transform the initial state into
 the goal state.  Actions involve
 sliding a tile into the empty/blank
 slot.  Easiest to imagine moving
 the blank slot.
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8 Puzzle State Space
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D = move blank down 
 L = move blank to left


Goal
 State
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How to Approach


•  First, what does a solution structure look like.


•  Second, how to generate all possible candidates.


•  Third, how to identify actual solutions.
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Solution Structure


•  Our solution structure will be a list of states,
 [S0, S1, S2, …, Sn], with S0 the initial state, Sn
 the goal state, and each Si, Si+1 being
 connected by a legal move.
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What’s in a State?


•  Just as in the 8 queens puzzle, there’s different
 ways of representing a state:

– List the positions of the tiles.

– List the contents of the positions.

– List the positions of the blank and the tiles.


•  A state will be a list of the positions of blank
 and tiles (in ascending order).  E.g., 

–  [BlankPos, T1Pos, T2Pos, …, T8Pos]
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Representing Position 


•  How should position of a tile be represented?

•  Number of different ways, we choose cartesian

 coordinates.


3


2
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 1      2     3


 1    3    


 8    2     4


7     6     5


Tile 8’s position is
 coordinates: 1, 2.  What data
 structure should we use to
 represent coordinates? 
 Same as for 8 queens: X/Y
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State Representation cont’d
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This state is represented as:


[3/3,1/3,2/2,2/3,3/2,3/1,2/1,1/1,1/2]    


   b     1   2     3    4    5    6    7    8
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Naïve Approach to �
Candidate Generation


•  Generate sequences of valid states & test each:

–  is first state the initial state? 

–  valid sequence of legal transitions between states? 

–  is last state the goal state?


•  How many states are there?    ~50,000 states

•  How many sequences of length n?   50,000 ** n

•  Naïve approach too computationally expensive.
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Test Incorporation


•  How to narrow down number of candidates?

•  We have 3 testers:


–  is first state the initial state? 

–  valid sequence of legal transitions between states? 

–  is last state the goal state?


•  Try incorporating some of them into the
 generator.
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Incorporating Testers


•  Is first state the initial state?

•  Generate only those sequences that begin with S0.


•  Valid sequence of legal transitions between states?

•  Only add legal transition states to end of sequences.


•  Is last state the goal state?

•  Can’t incorporate this on top of preceding two, it will
 remain a tester.
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Our “solve/3” Relation


•  Signature: ids(+StartState, +GoalState, ?RevSol)


•  ids(StartState, GoalState, RevSol) : 
 


 
path(StartState, EndState, RevSol),  generator

 
EndState = GoalState. 
 
    tester
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Generating Solution Candidates


•  Forward chaining: 

– List containing just S0 is candidate.

– Given candidate, adding legal transition state to end

 is candidate.

•  Forward chaining defines the search space

 topology, i.e., the nodes & edges.
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Computing Legal Transitions


•  Given [S0, S1, …, Si], compute the legal
 transition states that can be added to end.


•  Legal transitions only depend on last state.

•   Given last state Si, what is easiest way to

 compute legal transitions?

•  Could look at each tile & see which ones move.

•  Could look at blank & see which way can move.
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Computing Legal Transitions �
Based on Blank Position


3


2
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 1      2     3
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Depending on where blank is, it can move in
 as many as 4 different directions: up, down,
 left, right.  In example, blank is in upper
 right hand corner & can only move down or
 left.   
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/* newState(+OldState, ?NewState) */

newState([OldBX/OldBY|OldRest], NewState) :- 

            OldBX > 1,



moveLeft([OldBX/OldBY|OldRest], NewState).


newState([OldBX/OldBY|OldRest], NewState) :- 

            OldBX < 3,



moveRight([OldBX/OldBY|OldRest], NewState).


newState([OldBX/OldBY|OldRest], NewState) :-  

            OldBY > 1,



moveDown([OldBX/OldBY|OldRest], NewState).


newState([OldBX/OldBY|OldRest], NewState) :- 

            OldBY < 3,



moveUp([OldBX/OldBY|OldRest], NewState).


x/y coords of blank
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Search Space Traversal

• Given search space topology, & initial node, there are number of
 different ways to traverse that space: depth-first, breadth-first, etc.


• Each has advantages & disadvantages.  


• Iterative deepening combines advantages of both depth-first & breadth
-first.  


• Iterative deepening does succession of bounded depth-first searches.  


• If iteration does not find solution, bound is increased.




MB: 26 March 2001
 CS360 Lecture 13
 20


Iterative Deepening Traversal

                     I


          S1               S2


     S3        S4        S5


S6    S7  S8    S9


Iterative deepening would do the following traversals: 
 
        
 I (fail) 
 
 
 
 
 
 
 



        I - S1 - S2
 (fail) 
 
 
 
 
 
 
        I - S1 - S3 - S4
 - S2  -S5 (fail) 
 
 
 
 
        I - S1 - S3 - S6
 - S7 - S4 - S8 - S9 (success)
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Solution Candidate Generator


•  Our solution candidate generator will generate
 the candidates using iterative deepening.


•  Our generator’s signature is: 
 


 
path(+StartState, +EndState, ?RevSol)


•  RevSol will start out as a list containing just S0.

•  Next, sequences of legal state transitions of

 length 2 are generated, etc.
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Our Generator in Prolog


/* path(+StartNode, ?EndNode, ?Path) */

path(StartNode, StartNode, [StartNode]).


path(StartNode, EndNode, [EndNode|Path]) :-


path(StartNode, PenUltimateNode, Path),


newState(PenUltimateNode, EndNode),


not(member(EndNode,Path)).
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                     i


          s1                s2


     s3         s4         s5


s6     s7   s8     s9


/* path(+StartNode, ?EndNode, ?Path) */

1. path(StartNode, StartNode, [StartNode]).


2. path(StartNode, EndNode, [EndNode|Path]) :-


path(StartNode, PenUltimateNode, Path),


newState(PenUltimateNode, EndNode),


not(member(EndNode,Path)).
[path(i,s9,RS)]


 2. RS = [s9|P1]


[path(i, Pen, P1)  
 newState(Pen, End) 
 …]


1. Pen = i 
      
 P1 = [ i]


[



