
MB: 26 March 2001
 CS360 Lecture 13
 1

Programming in Logic: Prolog

Solving the 8-Puzzle

Readings: 11.1-2

MB: 26 March 2001
 CS360 Lecture 13
 2

Types of Puzzles

•  The puzzles we’ve seen so far have involved

 inferring new facts about a state that are
 consistent with the given facts and some
 “rules” about the domain.

•  Going to look at a puzzle, where the question is
 to find some sequence of actions/states which
 lead from an initial state to a goal state.

MB: 26 March 2001
 CS360 Lecture 13
 3

State Space

 I

 S1 S2

 S3 S4 S5

S6 S7 S8 S9

Initial State

Goal State

Solution = [I, S1, S4, S9]

Action

MB: 26 March 2001
 CS360 Lecture 13
 4

8 Puzzle

 1 3

 8 2 4

7 6 5

 1 2 3

 8 4

7 6 5

Initial
 State

Goal
 State

Find a sequence of actions/states
 that transform the initial state into
 the goal state. Actions involve
 sliding a tile into the empty/blank
 slot. Easiest to imagine moving
 the blank slot.

MB: 26 March 2001
 CS360 Lecture 13
 5

8 Puzzle State Space

 1 3

 8 2 4

7 6 5

 1 3

 8 2 4

7 6 5

 1 3 4

 8 2

7 6 5

 1 3

 8 2 4

7 6 5

 1 2 3

 8 4

7 6 5

 1 3 4

 8 2 5

7 6

 1 3 4

 8 2

7 6 5

L
 D

L
 L
D
 D

D = move blank down
 L = move blank to left

Goal
 State

MB: 26 March 2001
 CS360 Lecture 13
 6

How to Approach

•  First, what does a solution structure look like.

•  Second, how to generate all possible candidates.

•  Third, how to identify actual solutions.

MB: 26 March 2001
 CS360 Lecture 13
 7

Solution Structure

•  Our solution structure will be a list of states,
 [S0, S1, S2, …, Sn], with S0 the initial state, Sn
 the goal state, and each Si, Si+1 being
 connected by a legal move.

MB: 26 March 2001
 CS360 Lecture 13
 8

What’s in a State?

•  Just as in the 8 queens puzzle, there’s different
 ways of representing a state:

– List the positions of the tiles.

– List the contents of the positions.

– List the positions of the blank and the tiles.

•  A state will be a list of the positions of blank
 and tiles (in ascending order). E.g.,

–  [BlankPos, T1Pos, T2Pos, …, T8Pos]

MB: 26 March 2001
 CS360 Lecture 13
 9

Representing Position

•  How should position of a tile be represented?

•  Number of different ways, we choose cartesian

 coordinates.

3

2

1

 1 2 3

 1 3

 8 2 4

7 6 5

Tile 8’s position is
 coordinates: 1, 2. What data
 structure should we use to
 represent coordinates?
 Same as for 8 queens: X/Y

MB: 26 March 2001
 CS360 Lecture 13
 10

State Representation cont’d

3

2

1

 1 2 3

 1 3

 8 2 4

7 6 5

This state is represented as:

[3/3,1/3,2/2,2/3,3/2,3/1,2/1,1/1,1/2]

 b 1 2 3 4 5 6 7 8

MB: 26 March 2001
 CS360 Lecture 13
 11

Naïve Approach to �
Candidate Generation

•  Generate sequences of valid states & test each:

–  is first state the initial state?

–  valid sequence of legal transitions between states?

–  is last state the goal state?

•  How many states are there? ~50,000 states

•  How many sequences of length n? 50,000 ** n

•  Naïve approach too computationally expensive.

MB: 26 March 2001
 CS360 Lecture 13
 12

Test Incorporation

•  How to narrow down number of candidates?

•  We have 3 testers:

–  is first state the initial state?

–  valid sequence of legal transitions between states?

–  is last state the goal state?

•  Try incorporating some of them into the
 generator.

MB: 26 March 2001
 CS360 Lecture 13
 13

Incorporating Testers

•  Is first state the initial state?

•  Generate only those sequences that begin with S0.

•  Valid sequence of legal transitions between states?

•  Only add legal transition states to end of sequences.

•  Is last state the goal state?

•  Can’t incorporate this on top of preceding two, it will
 remain a tester.

MB: 26 March 2001
 CS360 Lecture 13
 14

Our “solve/3” Relation

•  Signature: ids(+StartState, +GoalState, ?RevSol)

•  ids(StartState, GoalState, RevSol) :

path(StartState, EndState, RevSol), generator

EndState = GoalState.

 tester

MB: 26 March 2001
 CS360 Lecture 13
 15

Generating Solution Candidates

•  Forward chaining:

– List containing just S0 is candidate.

– Given candidate, adding legal transition state to end

 is candidate.

•  Forward chaining defines the search space

 topology, i.e., the nodes & edges.

MB: 26 March 2001
 CS360 Lecture 13
 16

Computing Legal Transitions

•  Given [S0, S1, …, Si], compute the legal
 transition states that can be added to end.

•  Legal transitions only depend on last state.

•  Given last state Si, what is easiest way to

 compute legal transitions?

•  Could look at each tile & see which ones move.

•  Could look at blank & see which way can move.

MB: 26 March 2001
 CS360 Lecture 13
 17

Computing Legal Transitions �
Based on Blank Position

3

2

1

 1 2 3

 1 3

 8 2 4

7 6 5

Depending on where blank is, it can move in
 as many as 4 different directions: up, down,
 left, right. In example, blank is in upper
 right hand corner & can only move down or
 left.

MB: 26 March 2001
 CS360 Lecture 13
 18

/* newState(+OldState, ?NewState) */

newState([OldBX/OldBY|OldRest], NewState) :-

 OldBX > 1,

moveLeft([OldBX/OldBY|OldRest], NewState).

newState([OldBX/OldBY|OldRest], NewState) :-

 OldBX < 3,

moveRight([OldBX/OldBY|OldRest], NewState).

newState([OldBX/OldBY|OldRest], NewState) :-

 OldBY > 1,

moveDown([OldBX/OldBY|OldRest], NewState).

newState([OldBX/OldBY|OldRest], NewState) :-

 OldBY < 3,

moveUp([OldBX/OldBY|OldRest], NewState).

x/y coords of blank

MB: 26 March 2001
 CS360 Lecture 13
 19

Search Space Traversal

• Given search space topology, & initial node, there are number of
 different ways to traverse that space: depth-first, breadth-first, etc.

• Each has advantages & disadvantages.

• Iterative deepening combines advantages of both depth-first & breadth
-first.

• Iterative deepening does succession of bounded depth-first searches.

• If iteration does not find solution, bound is increased.

MB: 26 March 2001
 CS360 Lecture 13
 20

Iterative Deepening Traversal

 I

 S1 S2

 S3 S4 S5

S6 S7 S8 S9

Iterative deepening would do the following traversals:

 I (fail)

 I - S1 - S2
 (fail)

 I - S1 - S3 - S4
 - S2 -S5 (fail)

 I - S1 - S3 - S6
 - S7 - S4 - S8 - S9 (success)

MB: 26 March 2001
 CS360 Lecture 13
 21

Solution Candidate Generator

•  Our solution candidate generator will generate
 the candidates using iterative deepening.

•  Our generator’s signature is:

path(+StartState, +EndState, ?RevSol)

•  RevSol will start out as a list containing just S0.

•  Next, sequences of legal state transitions of

 length 2 are generated, etc.

MB: 26 March 2001
 CS360 Lecture 13
 22

Our Generator in Prolog

/* path(+StartNode, ?EndNode, ?Path) */

path(StartNode, StartNode, [StartNode]).

path(StartNode, EndNode, [EndNode|Path]) :-

path(StartNode, PenUltimateNode, Path),

newState(PenUltimateNode, EndNode),

not(member(EndNode,Path)).

MB: 26 March 2001
 CS360 Lecture 13
 23

 i

 s1 s2

 s3 s4 s5

s6 s7 s8 s9

/* path(+StartNode, ?EndNode, ?Path) */

1. path(StartNode, StartNode, [StartNode]).

2. path(StartNode, EndNode, [EndNode|Path]) :-

path(StartNode, PenUltimateNode, Path),

newState(PenUltimateNode, EndNode),

not(member(EndNode,Path)).
[path(i,s9,RS)]

 2. RS = [s9|P1]

[path(i, Pen, P1)
 newState(Pen, End)
 …]

1. Pen = i

 P1 = [i]

[

