
Chapter 4

State-Space Planning

4.1 Introduction

The simplest classical planning algorithms are state-space search algorithms.
These are search algorithms in which the search space is a subset of the state
space: each node corresponds to a state of the world, each arc corresponds
to a state transition, and the current plan corresponds to the current path
in the search space. This chapter is organized as follows:

• Section 4.2 discusses algorithms that search forward from the initial state
of the world, to try to find a state that satisfies the goal formula.

• Section 4.3 discusses algorithms that search backward from the goal for-
mula to try to find the initial state.

• Section 4.4 describes an algorithm that combines elements of both forward
and backward search.

• Section 4.5 describes a fast domain-specific forward-search algorithm.

4.2 Forward Search

One of the simplest planning algorithms is the Forward-search algorithm
shown in Figure 4.1. The algorithm is nondeterministic (see Appendix A).
It takes as input the statement P = (O, s0, g) of a planning problem P. If P
is solvable, then Forward-search(O, s0, g) returns a solution plan; otherwise
it returns failure.

The plan returned by each recursive invocation of the algorithm is called
a partial solution, because it is part of the final solution returned by the
top-level invocation. We will use the term partial solution in a similar sense
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Forward-search(O, s0, g)
s ← s0

π ← the empty plan
loop

if s satisfies g then return π
applicable ← {a | a is a ground instance of an operator in O,

and precond(a) is true in s}
if applicable = ∅ then return failure
nondeterministically choose an action a ∈ applicable
s ← γ(s, a)
π ← π.a

Figure 4.1: A forward-search planning algorithm. We have written it using
a loop, but it can easily be rewritten to use a recursive call instead (see
Exercise 4.2).

throughout this book.
Although we have written Forward-search to work on classical planning

problems, the same idea can be adapted to work on any planning problem in
which we can (1) compute whether or not a state is a goal state, (2) find the
set of all actions that are applicable to a state, and (3) compute a successor
state that is the result of applying an action to a state.

Example 4.1 As an example of how Forward-search works, consider the
DWR1 problem whose initial state is the state s1 of Figure 2.2 and Example
2.10, and whose formula is g = at(r1, loc1), loaded(r1, c3). One of the execu-
tion traces of Forward-search does the following. In the first iteration of the
loop, it chooses

a = move(r1, loc2, loc1),

producing the state s5 of Figure 2.3 and Example 2.13. In the second iter-
ation, it chooses

a = load(crane1, loc1, c3, r1),

producing the state s6 of Figure 2.4 and Example 2.14. Since this state
satisfies g, the execution trace returns

π = 〈move(r1, loc2, loc1), load(crane1, loc1, c3, r1)〉.

There are many other execution traces, some of which are infinite. For
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example, one of them makes the following infinite sequence of choices for a:

move(r1, loc2, loc1);
move(r1, loc1, loc2);
move(r1, loc2, loc1);
move(r1, loc1, loc2);
. . .

!

4.2.1 Formal Properties

Proposition 4.2 Forward-search is sound, any plan π returned by Forward-
search(O, s0, g) is a solution for the planning problem (O, s0, g).

Proof. The first step is to prove that at the beginning of every loop iter-
ation,

s = γ(s0,π).

For the first loop iteration, this is trivial since π is empty. If it is true at
the beginning of the i’th iteration, then since the algorithm has completed
i − 1 iterations, there are actions a1, . . . , ai−1 such that π = 〈a1, . . . , ai−1〉,
and states s1, . . . , si−1 such that for j = 1, . . . , i− 1, sj = γ(sj−1, aj). If the
algorithm exits at either of the return statements, then there is no (i + 1)th
iteration. Otherwise, in the last three steps of the algorithm, it chooses an
action ai that is applicable to si−1, assigns

s ← γ(si−1, ai)
= γ(γ(s0, 〈a1, . . . , ai−1〉), ai)
= γ(s0, 〈a1, . . . , ai〉),

and assigns π ← 〈a1, . . . , ai〉. Thus s = γ(s0,π) at the beginning of the next
iteration.

If the algorithm exits at the first return statement, then it must be true
that s satisfies g. Thus, since s = γ(s0,π), it follows that π is a solution to
(O, s0, g). !

Proposition 4.3 Let P = (O, s0, g) be a classical planning problem, and
let Π be the set of all solutions to P. For each π ∈ Π, at least one execution
trace of Forward-search(O, s0, g) will return π.
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Proof. Let π0 = 〈a1, . . . , an〉 ∈ Π. We will prove that there is a nonde-
terministic trace such that for for every positive integer i ≤ n + 1, π =
〈a1, . . . , ai−1〉 at the beginning of the i’th iteration of the loop (which means
that the algorithm will return π0 at the beginning of the n+1’th iteration).
The proof is by induction on i.

• If i = 0, then the result is trivial.
• Let i > 0, and suppose that at the beginning of the i’th iteration, s =

γ(s0, 〈a1, . . . , ai−1〉). If the algorithm exits at either of the return state-
ments, then there is no i+1st iteration, so the result is proved. Otherwise,
〈a1, . . . , an〉 is applicable to s0, so 〈a1, . . . , ai−1, ai〉 is applicable to s0, so
ai is applicable to γ(s0, 〈a1, . . . , ai−1〉) = s. Thus ai ∈ E, so in the non-
deterministic choice, at least one execution trace chooses a = ai. This
execution trace assigns

s ← γ(s0, γ(〈a1, . . . , ai−1〉, ai)
= γ(s0, 〈a1, . . . , ai−1, ai〉)

so s = γ(s0, 〈a1, . . . , ai−1, ai〉) at the beginning of the i + 1st iteration. !

One consequence of Proposition 4.3 is that Foreward-search is complete. An-
other consequence is that Foreward-search’s search space is usually much
larger than it needs to be. There are various ways to reduce the size of the
search space, by modifying the algorithm to prune branches of the search
space (i.e., cut off search below these branches). A pruning technique is
safe if it is guaranteed not to prune every solution; in this case the modified
planning algorithm will still be complete. If we have some notion of plan
optimality, then pruning technique is strongly safe if there is at least one
optimal solution that it doesn#prune. In this case, at least one trace of the
modified planning algorithm will lead to an optimal solution if one exists.

Here is an example of a strongly safe pruning technique. Suppose the
algorithm generates plans π1 and π2 along two different paths of the search
space, and suppose π1 and π2 produce the same state of the world s. If π1

can be extended to form some solution π1π3, then π2π3 is also a solution,
and vice versa. Thus we can prune one of π1 and π2, and we will still be
guaranteed of finding a solution if one exists. Furthermore, if the plan that
we prune is whichever of π1 and π2 is longer, then we will still be guaranteed
of finding a shortest-length solution if one exists.

Although the above pruning technique can remove large portions of a
search space, its practical applicability is limited, due to the following draw-
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back: it requires us to keep track of states along more than one path. In
most cases, this will make the worst-case space complexity exponential.

There are safe ways to reduce the branching factor of Forward-search
without increasing its space complexity, but most of them are problem-
dependent. Section 4.5 gives an example.

4.2.2 Deterministic Implementations

Earlier we mentioned that in order for a depth-first implementation of a non-
deterministic algorithm to be complete, it will need to detect and prune all
infinite branches. In the Forward-search algorithm, this can be accomplished
by keeping a record of the sequence (s0, s1, . . . , sk) of states on the current
path, and modifying the algorithm to return failure whenever there is an
i < k such that sk = si. Even better is to modify the algorithm to return
failure whenever there is an i < k such that sk ⊆ si. Either modification
will prevent sequences of assignments such as the one described in Example
4.1, but there are some domains in which the second modification will prune
infinite sequences sooner than the first one.

To show that the second modification works correctly, we need to prove
two things: (1) that it causes the algorithm to return failure on every infinite
branch of the search space, and (2) that it does not cause the algorithm to
return failure on every branch that leads to a shortest-length solution:

• To prove (1), recall that classical planning problems are guaranteed to
have only finitely many states. Thus, every infinite path must eventually
produce some state sk that is the same as a state si that previously oc-
curred on that path—and whenever this occurs, the modified algorithm
will return failure.

• To prove (2), recall that the modification causes the algorithm to return
failure, then there must be an i < k such that sk = si. If the current node
in the search tree is part of any successful nondeterministic trace, then
the sequence of states for that trace will be

〈s0, . . . , si−1, si, si+1, . . . , sk−1, sk, sk+1, . . . , sn〉,

where n is the length of the solution. Let that solution be p = 〈a1, . . . , an〉,
where sj+1 = γ(sj , aj+1) for j = 0, . . . , n − 1. Then it is easy to prove
that the plan p′ = 〈a1, . . . , ai−1, ak, ak+1, . . . , an〉 is also a solution (see
Exercise 4.3). Thus, p cannot be a shortest-length solution.
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Backward-search(O, s0, g)
π ← the empty plan
loop

if s0 satisfies g then return π
applicable ← {a | a is a ground instance of an operator in O

that is relevant for g}
if applicable = ∅ then return failure
nondeterministically choose an action a ∈ applicable
π ← a.π
g ← γ−1(g, a)

Figure 4.2: Nondeterministic backward search.

4.3 Backward Search

Planning can also be done using a backward search. The idea is to start at
the goal, and apply inverses of the planning operators to produce subgoals,
stopping if we produce a set of subgoals that is satisfied by the initial state.
The set of all states that are predecessors of states in Sg is

Γ−1(g) = {s | there is an action a such that γ−1(g, a) satisfies g}.

This is the basis of the Backward-search algorithm shown in Figure 4.2. It
is easy to show that Backward-search is sound and complete; the proof is
analogous to the proof for Forward-search.

Example 4.4 As an example of how Backward-search works, consider the
same DWR1 problem given in Example 4.1. Recall that in this problem,
the initial state is the state s1 of Figure 2.2, and the goal formula is g =
{at(r1, loc1), loaded(r1, c3)}, which is a subset of the state s6 of Figure 2.4.
One of the execution traces of Backward-search does the following:

In the first iteration of the loop, it chooses a = load(crane1, loc1, c3, r1),
and then assigns

g ← γ−1(g, a)
= (g − effects+(a)) ∪ precond(a)
= ({at(r1, loc1), loaded(r1, c3)}−{ empty(crane1), loaded(r1, c3)})
∪ {belong(crane1, loc1), holding(crane1, c3), at(r1, loc1), unloaded(r1)}
= {at(r1, loc1), belong(crane1, loc1), holding(crane1, c3), unloaded(r1)}.
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In the second iteration of the loop, it chooses a = move(r1, loc2, loc1), and
then assigns

g ← γ−1(g, a)
= (g − effects+(a)) ∪ precond(a)
= ({at(r1, loc1), belong(crane1, loc1), holding(crane1, c3), at(r1, loc1), unloaded(r1)}

− {at(r1, loc2), occupied(loc1)})
∪ {adjacent(loc2, loc1), at(r1, loc1),¬occupied(loc1)}

= {belong(crane1, loc1), holding(crane1, c3), at(r1, loc1),
unloaded(r1), adjacent(loc2, loc1), at(r1, loc2),¬occupied(loc1)},

In the third iteration of the loop, it chooses a = take(crane1, loc1, c3, c1, p1).
This time we will omit the details of computing g ← γ−1(g, a), except to say
that the resulting value of g is satisfied by s1, so that the execution trace
terminates at the beginning of the fourth interation, and returns the plan

π = 〈take(crane1, loc1, c3, c1, p1), (move(r1, loc2, loc1), load(crane1, loc1, c3, r1)〉.

There are many other execution traces, some of which are infinite. For
example, one of them makes the following infinite sequence of assignments
to a:

load(crane1, loc1, c3, r1);
unload(crane1, loc1, c3, r1);
load(crane1, loc1, c3, r1);
unload(crane1, loc1, c3, r1);
. . .

!

Let g0 = g. For each integer i > 0, let gi be the value of g at the end
of the i’th iteration of the loop. Suppose we modify Backward-search to
keep a record of the sequence of goal formulas (g1, . . . , gk) on the current
path, and to backtrack whenever there is an i < k such that gi ⊆ gk. Just as
with Forward-search, it can be shown that this modification causes Backward-
search to return failure on every infinite branch of the search space, and that
it does not cause Backward-search to return failure on every branch that leads
to a shortest-length solution (see Exercise 4.5). Thus, the modification can
be used to do a sound and complete depth-first implementation of Backward-
search.

The size of active can be reduced by instantiating the planning opera-
tors only partially rather than fully. Lifted-backward-search, shown in Fig-
ure 4.3, does this. Lifted-backward-search is a straightforward adaptation of
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Lifted-backward-search(O, s0, g)
π ← the empty plan
loop

if s0 satisfies g then return π
relevant ← {(o,σ) | o is an operator in O that is relevant for g,

σ1 is a substitution that standardizes o’s variables,
σ2 is an mgu for σ1(o) and the atom of g that o is
relevant for, and σ = σ2σ1}

if relevant = ∅ then return failure
nondeterministically choose a pair (o,σ) ∈ relevant
π ← σ(o).σ(π)
g ← γ−1(σ(g),σ(o))

Figure 4.3: Lifted version of Backward-search.

Backward-search. Instead of taking a ground instance of an operator o ∈ O
that is relevant for g, it standardizes o’s variables1 and then unifies it 2 with
the appropriate atom of g.

The algorithm is both sound and complete, and in most cases it will have
a substantially smaller branching factor than Backward-search.

Like Backward-search, Lifted-backward-search can be modified in order to
guarantee termination of a depth-first implementation of it, while preserv-
ing its soundness and completeness. However, this time the modification is
somewhat trickier. Suppose we modify the algorithm to keep a record of the
sequence of goal formulas (g1, . . . , gk) on the current path, and to backtrack
whenever there is an i < k such that gi ⊆ gk. This is not sufficient to guar-
antee termination. The problem is that this time, gk need not be ground.
There are infinitely many possible unground atoms, so it is possible to have
infinite paths in which no two nodes are the same. However, if two different
sets of atoms are unifiable, then they are essentially equivalent, and there
are only finitely many possible non-unifiable sets of atoms. Thus, we can
guarantee termination if we backtrack whenever there is an i < k such that
gi unifies with a subset of gk.

1Standardizing an expression means replacing its variable symbols with new variable
symbols that do not occur anywhere else. One of the exercises deals with why standard-
izing is needed here.

2mgu is an abbreviation for most general unifier; see Appendix B for details.
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STRIPS(O, s0, g)
π ← the empty plan
loop

if s satisfies g then return π
A ← {a | a is a ground instance of an operator in O,

and o is relevant for g}
if A = ∅ then return failure
nondeterministically choose any action a ∈ A
π′ ← STRIPS(O, s0,precond(a))
if π′ = failure then return failure
;; if we get here, then π′ achieves precond(a) from s
s ← γ(s,π′)
;; s now satisfies precond(a)
s ← γ(s, a)
π ← π.π′.a

Figure 4.4: A ground nondeterministic version of the STRIPS algorithm.

4.4 The STRIPS Algorithm

With all of the planning algorithms we have discussed so far, one of the
biggest problems is how to improve efficiency by reducing the size of the
search space. The STRIPS algorithm was an early attempt to do this. Figure
4.4 shows a nondeterministic version of the algorithm. In our version, every
partial plan is ground, but it is easy to write a lifted version (see Exercise
4.15).

STRIPS is somewhat similar to Backward-search, but differs from it in
the following ways:

1. In each recursive call of the STRIPS algorithm, the only subgoals that
are eligible to be worked on are the preconditions of the last previous
operator that was added to the plan. This reduces the branching factor
substantially; however, it makes STRIPS incomplete.

2. If the current state satisfies all of an operator’s preconditions, STRIPS
commits to executing that operator, and will not backtrack over this
commitment. This prunes off a large portion of the search space, but
again makes STRIPS incomplete.

As an example of a case where STRIPS is incomplete, STRIPS is unable to
find a plan for one of the first problems that a computer programmer learns
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s0 = {in(c3, p1), top(c3, p1), in(c1, p1), on(c3, c1),
on(c1, pallet), in(c2, p2), top(c2, p2),
on(c2, pallet), top(pallet, q1), top(pallet, q2),
top(pallet, q3), empty(crane)}

g = {on(c1, c2),
on(c2, c3)}

Figure 4.5: A DWR version of the Sussman anomaly.

how to solve: the problem of interchanging the values of two variables.
Even for problems that STRIPS solves, it does not always find the best

solution. Here is an example:

Example 4.5 Probably the best-known planning problem that causes dif-
ficulty for STRIPS is the Sussman anomaly, which was described in Exercise
2.1. Figure 4.5 shows a DWR version of this problem. In the figure, the
objects include one location loc, one crane crane, three containers c1, c2,c3,
and five piles p1, p2, q1, q2, q3. Although STRIPS’s search space for this
problem contains infinitely many solutions (see Exercise 4.14), none of them
are irredundant. The shortest solutions that STRIPS can find are all similar
to the following:

take(c3,loc,crane,c1),
put(c3,loc,crane,q1),
take(c1,loc,crane,p1),
put(c1,loc,crane,c2), STRIPS has achieved on(c1,c2)
take(c1,loc,crane,c2),
put(c1,loc,crane,p1),
take(c2,loc,crane,p2),
put(c2,loc,crane,c3), STRIPS has achieved on(c2,c3),

but needs to re-achieve on(c1,c2)
take(c1,loc,crane,p1),
put(c1,loc,crane,c2). STRIPS has now achieved both goals
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!

In both Example 4.5 and the problem of interchanging the values of
two variables, STRIPS’s difficulty involves deleted-condition interactions, in
which the action chosen to achieve one goal has a side-effect of deleting
another previously-achieved goal. For example, in the plan shown above, the
action take(c1,loc,crane,c2) is necessary in order to help achieve on(c2,c3),
but it deletes the previously achieved condition on(c1,c2).

One way to find the shortest plan for the Sussman anomaly is to in-
terleave plans for different goals. The shortest plan for achieving on(c1,c2)
from the initial state is

take(c3,loc,crane,c1), put(c3,loc,crane,q1),
take(c1,loc,crane,p1), put(c1,loc,crane,c2),

and the shortest plan for achieving on(c1,c2) from the initial state is

take(c2,loc,crane,p2), put(c2,loc,crane,c3).

We can get the shortest plan for both goals by inserting the second plan
between the first and second lines of the first plan.

Observations such as these led to the development of a technique called
plan-space planning, in which the planning system searches through a space
whose nodes are partial plans rather than states of the world, and a partial
plan is a partially ordered sequence of partially instantiated actions rather
than a totally ordered sequence. Plan-space planning is discussed in Chapter
5.

4.5 Domain-Specific State-Space Planning

This section illustrates how knowledge about a specific planning domain can
be used to develop a very fast planning algorithm that very quickly generates
plans whose lengths are optimal or near-optimal. The domain, which we call
the container-stacking domain, is a restricted version of the DWR domain.

4.5.1 The Container-Stacking Domain

The language for the container-stacking domain contains the following con-
stant symbols. There is a set of containers c1, c2, . . . , cn and a set of piles
p1, p2, . . . , pm, q1, q2, . . . , ql, where m,n, l may vary from one problem to an-
other and l ≥ n. There is one location loc, one crane crane, and a constant
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Table 4.1: Positions of containers in the initial state shown in Figure 4.5.

Container Position Maximal? Consistent with goal?

c1 {on(c1, pallet)} No No: contradicts on(c1, c2)
c2 {on(c2, pallet)} Yes No: contradicts on(c2, c3)
c3 {on(c3, c1), on(c1, pallet)} Yes No: contradicts on(c1, c2)

symbol pallet to represent the pallet at the bottom of each pile. The piles
p1, . . . , pm are the primary piles, and the piles q1, . . . , ql are the auxiliary
piles.

A container-stacking problem is any DWR problem for which the con-
stant symbols are the ones described above, and for which the crane and
the auxiliary piles are empty in both the initial state and the goal. As an
example, Figure 4.5 shows a container-stacking problem in which n = 3.

If s is a state, then a stack in s is any set of atoms e ⊆ s of the form

{in(c1, p), in(c2, p), . . . , in(ck, p), on(c1, c2), on(c2, c3), . . . , on(ck−1, ck), on(ck, t)}

where p is a pile, each ci is a container, and t is the pallet. The top and
bottom of e are c1 and ck, respectively. The stack e is maximal if it is not a
subset of any other stack in s.

If s is a state and c is a container, then position(c, s) is the stack in s
whose top is c. Note that position(c, s) is a maximal stack if and only if s
contains the atom top(c, p); see Table 4.1 for examples.

From the above definitions, it follows that in any state s, the position
of a container c is consistent with the goal formula g only if the positions
of all containers below c are also consistent with g. For example, in the
container-stacking problem shown in Figure 4.5, consider the container c3.
Since position(c1, s0) is inconsistent with g and c3 is on c1, position(c1, s0)
is also inconsistent with g.

4.5.2 Planning Algorithm

Let P be a container-stacking problem in which there are m containers and
n atoms. In time O(n log n) one can check whether or not P is solvable, by
checking whether or not g is consistent, and whether or not g mentions any
containers not mentioned in s0. If g is inconsistent or mentions a container
not mentioned in s0, then clearly P is not solvable.
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Stack-containers(O, s0, g):
if g is inconsistent or refers to any containers not in s0 then

return failure ;; the planning problem is unsolvable
π ← the empty plan
s ← s0

loop
if s satisfies g then return π
if there are containers b and c at the tops of their piles such that

position(c, s) is consistent with g
g contains on(b, c)

then
append actions to π that move b to c
s ← the result of applying these actions to s
;; we will never need to move b again

else if there is a container b at the top of its pile
such that position(b, s) is inconsistent with g
and there is no c such that on(b, c) ∈ g

then
append actions to π that move b to an empty auxiliary pile
s ← the result of applying these actions to s
;; we will never need to move b again

else
nondeterministically choose any container c such that c is

at the top of a pile and position(c, s) is inconsistent with g
append actions to π that move c to an empty auxiliary pallet
s ← the result of applying these actions to s

Figure 4.6: A fast algorithm for container-stacking.

Suppose g is consistent and only mentions containers that are also men-
tioned in s0, and let u1, u2, . . . , uk be all of the maximal stacks in g. It is
easy to construct a plan that solves P by moving all containers to auxiliary
pallets and then building each maximal stack from the bottom up. The
length of this plan is at most 2m, and it takes time O(n) to produce it.

In general, the shortest solution length is likely to be much less than 2m,
because most of the containers will need to be moved only once or not at
all. The problem of finding a shortest-length solution can be proved to be
NP-hard, which provides strong evidence that it requires exponential time
in the worst case. However, it is possible to devise algorithms that find,
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in low-order polynomial time, a solution whose length is either optimal or
near-optimal. One simple algorithm for this is the Stack-containers algorithm
shown in Figure 4.6. Stack-containers guaranteed to find a solution, and it
runs in time O(n3), where n is the length of the plan that it finds.

Unlike STRIPS, Stack-containers has no problem with deleted-condition
interactions. For example, Stack-containers will easily find a shortest-length
plan for the Sussman anomaly.

The only steps of Stack-containers that may cause the plan’s length to
be non-optimal are the ones in the else clause at the end of the algorithm.
However, these steps usually are not executed very often, because the only
time that they are needed is when there is no other way to progress toward
the goal.

4.6 Discussion and Historical Remarks

Although state-space search might seem like an obvious way to do planning,
it languished for many years. For a long time, no good techniques were
known for guiding the search; and without such techniques, a state-space
search can search a huge search space. During the last few years, better
techniques have been developed for guiding state-space search (see Part 3 of
this book). As a result, some of the fastest current planning algorithms use
forward-search techniques [30, 263, 402].

The container-stacking domain in 4.5 is a DWR adaptation of a well
known domain called the blocks world. The blocks world was originally
developed by Winograd [545] as a test bed for his natural-language under-
standing program, but it subsequently has been used much more widely as
a test bed for planning algorithms.

The planning problem in Example 4.5 is an adaptation of a blocks-world
planning problem originally by Allen Brown [532], who was then a Ph.D.
student of Sussman. Sussman was the one who popularized the problem
[492]; hence it became known as the Sussman anomaly.

In Fikes and Nilsson’s original version of STRIPS [180], each operator
had a precondition list, add list, and delete list, and these were allowed to
contain arbitrary well-formed formulas in first-order logic. However, in the
presentation of STRIPS in Nilsson’s subsequent textbook [414], the opera-
tors were restricted to a format that is equivalent to our classical planning
operators.

Stack-containers is an adaption of Gupta and Nau’s blocks-world plan-
ning algorithm [241]. Although our version of this algorithm runs in O(n3)
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time, Slaney and Thiébaux [470] describe an improved version of it that runs
in linear time, and they also describe another algorithm that also runs in
linear time and finds significantly better plans.

4.7 Exercises

4.1 Here is a simple planning problem in which the objective is to inter-
change the values of two variables v1 and v2:

s0 = {value(v1,3), value(v2,5), value(v3,0)};
g = {value(v1,5), value(v2,3)};

assign(v, w, x, y)
precond: value(v, x),value(w, y)
effects: ¬value(v, x), value(v, y)

If we run Forward-search on this problem, how many iterations will there
be in the shortest execution trace? In the longest one?

4.2 Show that the algorithm shown in Figure 4.7 is equivalent to Forward-
search, in the sense that both algorithms will generate exactly the same
search space.

Recursive-forward-search(O, s0, g)
if s satisfies g then return the empty plan
active ← {a | a is a ground instance of an operator in O

and a’s preconditions are true in s}
if active = ∅ then return failure
nondeterministically choose an action a1 ∈ active
s1 ← γ(s, a1)
π ← Recursive-forward-search(s1, g, O)
if π += failure then return a1.p
else return failure

Figure 4.7: A recursive version of Forward-search.

4.3 Prove property (2) of Section 4.2.2.

4.4 Prove that if a classical planning problem P is solvable, then there will
always be an execution trace Backward-search that returns a shortest-length
solution for P.



88 Part I, Chapter 4

4.5 Prove that if we modify Backward-search as suggested in Section 4.3,
the modified algorithm has the same property described in Exercise 4.4.

4.6 Explain why Lifted-backward-search needs to standardize its operators.

4.7 Prove that Lifted-backward-search is sound and complete.

4.8 Prove that Lifted-backward-search has the same property described in
Exercise 4.4.

4.9 Prove that the search space for the modified version of Lifted-backward-
search never has more nodes than the search space for the modified version
of grounded-backward-search.

4.10 Why did Problem 4.9 refer to the modified versions of the algorithms
rather than the unmodified versions?

4.11 Trace the operation of the STRIPS algorithm on the Sussman anomaly
to create the plan given in Section 4.4. Each time STRIPS makes a nonde-
terministic choice, tell what the possible choices are. Each time it calls itself
recursively, give the parameters and the returned value for the recursive
invocation.

4.12 In order to produce the plan given in Section 4.4, STRIPS starts out
by working on the goal on(c1,c2). Write the plan STRIPS will produce if it
starts out by working on the goal on(c2,c3).

4.13 Trace the operation of STRIPS on the planning problem in Exercise
4.7.

4.14 Prove that STRIPS’s search space for the Sussman anomaly contains
infinitely many solutions, and that it contains paths that are infinitely long.

4.15 Write a lifted version of the STRIPS algorithm.

4.16 Redo Exercise 4.11 through 4.13 using your lifted version of STRIPS.

4.17 Our formulation of the container-stacking domain requires n auxiliary
piles. Will the n’th pile ever get used? Why or why not? How about the
n− 1’st pile?
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4.18 Show that if we modify the container-stacking domain to get rid of the
auxiliary piles, then there will be problems whose shortest solution length
is longer than before.

4.19 Suppose we modify the notation for the container-stacking domain so
that instead of writing, for example,

in(a, p1), in(b, p1), top(a, p1), on(a, b), on(b, pallet),
in(c, p2), in(d, p2), top(c, p2), on(c, d), on(d, pallet)

we would instead write

clear(a), on(a, b), on(b, p1), clear(c), on(c, d), on(c, p2)

(a) Show that there is a one-to-one correspondence between each problem
written in the old notation and an equivalent problem written in the
new notation.

(b) What kinds of computations can be done more quickly using the old
notation than using the new notation?

4.20 If P is the statement of a container-stacking problem, what is the
corresponding planning problem in the blocks-world domain described in
Exercise 3.6? What things prevent the two problems from being completely
equivalent?

4.21 Show that Stack-containers will always find a shortest-length solution
for the Sussman anomaly.

4.22 Find a container-stacking problem for which Stack-containers will not
always find a shortest-length solution. Hint: you probably will need at least
thirteen containers.
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Chapter 5

Plan-Space Planning

5.1 Introduction

In the previous chapter, we addressed planning as the search for a path
in the graph Σ of a state-transition system. For state-space planning, the
search space is given directly by Σ. Nodes are states of the domain; arcs are
state transitions or actions; a plan is a sequence of actions corresponding to
a path form the initial state to a goal state.

We shall be considering in this chapter a more elaborate search space
that is not Σ anymore. It is a space where nodes are partially specified plans.
Arcs are plan refinement operations intended to further complete a partial
plan, i.e., to achieve an open goal or to remove a possible inconsistency.
Intuitively, a refinement operation avoids adding to the partial plan any
constraint which is not strictly needed for addressing the refinement purpose.
This is called the least commitment principle. Planning starts from an initial
node corresponding to an empty plan. The search aims at a final node
containing a solution plan that achieves correctly the required goals.

Plan-space planning differs from state-space planning not only in its
search space, but also in its definition of a solution plan. Plan-space uses
a more general plan structure than a sequence of actions. Here planning is
considered as two separate operations (i) the choice of actions, and (ii) the
ordering of the chosen actions such as to achieve the goal. A plan is defined
as a set of planning operators together with ordering constraints and binding
constraints; it may not correspond to a sequence of actions.

The search space is detailed in Section 5.2. Properties of solution plans
are analyzed in Section 5.3; correctness conditions with respect to the seman-
tics of state transition systems are established. Algorithms for plan-space
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planning are proposed in Section 5.4. Several extensions are considered in
Section 5.5.The chapter ends with a discussion and exercises.

5.2 The Search Space of Partial Plans

Generally speaking, a plan is a set of actions organized into some structure,
e.g., a sequence. A partial plan can be defined as any subset of actions that
keeps some useful part of this structure, e.g., a subsequence for state-space
planning. All planning algorithms seen up to now extend step by step a
partial plan. However, these were particular partial plans. Their actions
are sequentially ordered. The total order reflects the intrinsic constraints
of the actions in the partial plan, but also the particular search strategy
of the planning algorithm. The former constraints are needed: a partial
plan that is just an unstructured collection of actions would be meaningless
since the relevance of a set of actions depends strongly on their organization.
However the constraints reflecting the search strategy of the algorithm are
not needed. There can be advantages in avoiding them.

To find out what is needed in a partial plan, let us develop an informal
planning step on a simple example. Assume that we already have a partial
plan; let us refine it by adding a new action and let us analyze how the
partial plan should be updated. We’ll come up with four ingredients: adding
actions, adding ordering constraints, adding causal relationships, and adding
variable binding constraints.

Example 5.1 In the DWR domain, consider the problem where a robot r1
has to move a container c1 from pile p1 at location l1 to pile p2 and location
l2 (see Figure 5.1). Initially r1 is unloaded at a location l3. There are empty
cranes k1 and k2 at location l1 and l2 respectively. Pile p1 at location l1
contains only container c1, pile p2 at location l2 is empty. All locations are
adjacent. !

For the above example, let us consider a partial plan which contains only
the two following actions:

• take(k1,c1,p1,l1): crane k1 picks up container c1 from pile p1 at location
l1;

• load(k1,c1,r1,l1): crane k1 loads container c1 on robot r1 at location l1.

Adding actions. There is nothing in this partial plan that guarantees
that robot r1 is already at location l1. Proposition at(r1,l1) required as a
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Figure 5.1: A simple DWR problem.

precondition by action load is a subgoal in this partial plan. Let us add to
this plan the following action:

• move(r1,l,l1): robot r1 moves to the required location l1.

Adding ordering constraints. This additional action achieves its pur-
pose only if it is constrained to come before the load action. Should the
move action come before or after the take action? Both options are feasi-
ble. The partial plan does not commit unnecessarily at this stage to either
ones. This follows a strategy, called the least commitment principle, of not
adding a constraint to a partial plan unless strictly needed. Here, the only
needed constraint is to have move before load. Other constraints, that may
be needed later-on while planning, or even while executing the plan, may
order move and take or may permit to run them concurrently.

Adding causal links. In the partial plan, we have added one action
and one ordering constraint to another action already in the plan. Is that
enough? Not quite. Since there is no explicit notion of a current state, an
ordering constraint does not say that the robot stays at location l1 until the
load action is performed. While pursuing the refinement of the partial plan,
the planner may find other reasons to move the robot elsewhere, forgetting
about the rationale for moving it to l1 in the first place. Hence, we’ll be en-
coding explicitly in the partial plan the reason why action move was added
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to it: to satisfy the subgoal at(r1,l1) required by action load.
This relationship between the two actions move and load with respect

to proposition at(r1,l1), is called a causal link. The former action is called
the provider of the proposition, the later is its consumer.1 The precise role
of a causal link is to state that a precondition of an action is supported by
another action. Consequently, a precondition without a causal link is not
supported. It will considered to be an open subgoal in the partial plan.

A provider has to be ordered before a consumer, but not necessarily
strictly before in a sequence: other actions may take place in between.
Hence, a causal link does not prevent interference between the provider and
the consumer that may be due to other actions introduced later-on. Note
that a causal link goes with an ordering constraint, but we may have or-
dering constraints without causal links: none of these relations is redundant
with respect to the other.

Adding variable binding constraints. A final item in the partial plan
that goes with the refinement we are considering is that of variable binding
constraints. Planning operators are generic schema with variable arguments
and parameters. Operators are added in a partial plan with a systematic
variable renaming. We should make sure that the new operator move con-
cerns the same robot r1 and the same location l1 as those in operators take
and load. What about location l the robot will be coming from? At this
stage there is no reason to bind this variable to a constant. The same ra-
tionale of least commitment applies here as in the ordering between move
and take. The variable l is kept unbounded. Later-on, while further refining
the partial plan, we may find it useful to bind it to the initial position of
the robot or to some other locations. To sum up, we have added to the
partial plan: i) an action, ii) an ordering constraint, iii) a causal link, and
iv) variable binding constraints. These are exactly the four ingredients of
partial plans.

Definition 5.2 A partial plan is a tuple π = (A,≺, B, L) where:

• A = {a1, ..., ak} is a set of partially instantiated planning operators;
• ≺ is a set of ordering constraints on A of the form (ai ≺ aj);
• B is a set of binding constraints on the variables of actions in A of the
form x = y, x += y, or x ∈ Dx, Dx being a subset of the domain of x;

1Not in the sense of consuming a resource: load does not change this precondition.
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• L is a set of causal links of the form 〈ai
p−→ aj〉, such that ai and aj are

actions in A, the constraint (ai ≺ aj) is in ≺, proposition p is an effect of
ai and a precondition of aj , and the binding constraints for variables of
ai and aj appearing in p are in B.

!

A plan space is an implicit directed graph whose vertices are partial plans
and whose edges correspond to refinement operations. An outgoing edge
from a vertex π in the plan space is a refinement operation that transforms
π into a successor partial plan π′. A refinement operation consists of one or
more of the following steps:

• adding an action to A;
• adding an ordering constraint to ≺;
• adding a binding constraint to B;
• adding a causal link to L.

Planning in a plan space is a search in that graph of a path from an
initial partial plan denoted π0 to a node recognized as a solution plan. At
each step, the planner has to choose and apply a refinement operation to
the current plan π in order to achieve the specified goals. We now describe
how goals and initial states are specified in the plan space.

Partial plans represent only actions and their relationships, states are
not explicit. Hence, goals and initial states have also to be coded within the
partial plan format as particular actions. Since preconditions are subgoals,
the propositions corresponding to the goal g are represented as the precon-
ditions of a dummy action, call it a∞, that has no effect. Similarly, the
propositions in the initial state s0 are represented as the effects of a dummy
action, a0, that has no precondition. The initial plan π0 is defined as the
set {a0, a∞}, together with the ordering constraint (a0 ≺ a∞), but with no
binding constraint and no causal link. The initial plan π0, as well as any
current partial plan, represent goals and subgoals as preconditions without
causal links.

Example 5.3 Let us illustrate two partial plans corresponding to the pre-
vious example (figure 5.1). The goal of having container c1 in pile p2 can
be expressed simply as: in(c1,p2). The initial state is :

{adjacent(l1,l2), adjacent(l1,l3), adjacent(l2, l3),
adjacent(l2, l1), adjacent(l3, l1), adjacent(l3, l2),
attached(p1,l1), attached(p2, l2), belong(k1,l1), belong(k2, l2),
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Figure 5.2: Initial plan π0.

empty(k1) , empty(k2) , at(r1,l3), unloaded(r1) , occupied(l3),
in(c1,p1) , on(c1,pallet) , top(c1,p1) , top(pallet, p2) }

The first three lines describe rigid properties, i.e., invariant properties on
the topology of locations, of piles and cranes; the last two define the specific
initial conditions considered in this example.

A graphical representation of the initial plan π0 corresponding to this
problem is drawn in figure 5.2. The partial plan discussed earlier with the 3
actions take, load and move is given in figure 5.3. In these figures, each box
is an action with preconditions above and effects bellow the box; to simplify,
rigid properties are not shown in the effects of a0 ; solid arrows are ordering
constraints; dashed arrows are causal links; binding constraints are implicit
or shown directly in the arguments. !

To summarize, a partial plan π is a structured collection of actions that
provides the causal relationships for the actions in π, as well as their intrin-
sic ordering and variable binding constraints. A partial plan also provides
subgoals in π as preconditions without causal links. A plan-space planner
refines partial plan by further ordering and constraining its actions, or by
adding new actions “anywhere” in the partial plan, as long as the constraint
in π remain satisfiable. A partial plan enables to neatly decouple two main
issues in classical planning:

• which actions need to be done in order to meet the goals, and
• how to organize these actions.

It is convenient to view a partial plan π as representing a particular set of
plans. It is the set of all sequences of actions corresponding to a path from
the initial state to a goal state that can be obtained by refinement operations
on π, that is by adding to π operators, ordering and binding constraints. A
refinement operation on π reduces the set of plans associated with π to a
smaller subset. This view will be formalized in the next section.
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Figure 5.3: A partial plan.

5.3 Solution Plans

In order to define planning algorithms in the plan space, we need to formally
specify what is a solution plan in the plan space. A solution plan for a prob-
lem P = (Σ, s0, g) has been formally defined, with respect to the semantics
of state transition systems, as a sequence of ground actions from s0 to a
state in g (see Section 2.3.3). We now have to take into account that actions
in a partial plan π = (A,≺, B, L) are only partially ordered and partially
instantiated.

A consistent partial order ≺ corresponds to the set of all sequences of
totally ordered actions of A that satisfy the partial order. Technically, these
sequences are the topological orderings of the partial order ≺. There can be
an exponential number of them. Note that a partial order defines a directed
graph; it is consistent when this graph is loop free.

Similarly, for a consistent set of binding constraints B, there are many
sequences of totally instantiated actions of A that satisfy B. These sequences
correspond to all the ways of instantiating every unbounded variable x to a
value in its domain Dx allowed by the constraints. The set B is consistent
if every binding of a variable x with a value in the allowed domain Dx

is consistent with the remaining constraints. Note that this is a strong
consistency requirement.
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Definition 5.4 A partial plan π = (A,≺, B, L) is a solution plan for prob-
lem P = (Σ, s0, g) if

(i) its ordering constraints ≺ and binding constraints B are consistent; and
(ii) every sequence of totally ordered and totally instantiated actions of A
satisfying ≺ and B is a sequence that defines a path in the state transition
system Σ from the initial state s0 corresponding to effects of action a0 to
a state containing all goal propositions in g given by preconditions of a∞.

!

According to this definition, a solution plan corresponds to a set of se-
quences of actions, each being a path from the initial state to a goal state.
This definition does not provide a computable test for verifying plans: it is
not feasible to check all instantiated sequences of actions of A. We need a
practical condition for characterizing the set of solutions. We already have
a hint. Remember that a subgoal is a precondition without a causal link.
Hence, a plan π meets its initial goals, and all the subgoals due to the precon-
ditions of its actions, if it has a causal link for every precondition. However
this is not sufficient: π may not be constrained enough to guarantee that all
possible sequences define a solution path in graph Σ.

Figure 5.4: A plan containing an incorrect sequence.

Example 5.5 Consider the previous example where we had a causal link
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from action move(r1,l, l1) to action load(k1,c1,r1,l1), with respect to propo-
sition at(r1,l1). Assume that the final plan contains another action move(r,
l′, l”), without any ordering constraint that requires this action to be or-
dered before the previous move(r1,l′,l1) or after action load, and without
any binding constraint that requires r to be distinct from r1, nor l′ from l1
(Figure 5.4).

Among the set of totally ordered and instantiated sequences of actions
of such a plan, there is at least one sequence that contains the subsequence
〈move(r1,l, l1), ..., move(r1,l1,l”), ..., load(k1,c1,r1,l1)〉

which is not a correct solution: the precondition at(r1,l1) is not satisfied in
the state preceding action load. !

Definition 5.6 [Threats] An action ak in a plan π is a threat on a causal
link 〈ai

p−→ aj〉 iff:

• ak has an effect ¬q that is possibly inconsistent with p, i.e. q and p are
unifiable;

• the ordering constraints (ai ≺ ak) and (ak ≺ aj) are consistent with ≺;
and

• the binding constraints for the unification of q and p are consistent with
B.

!

Definition 5.7 [Flaws] A flaw in a plan π = (A,≺, B, L) is either:

• a subgoal, i.e., a precondition of an action in A without a causal link, or
• a threat, that is an action that may interfere with a causal link.

!

Proposition 5.8 A partial plan π = (A,≺, B, L) is a solution to the plan-
ning problem P = (Σ, s0, g) if π has no flaw and if the sets of ordering
constraints ≺ and binding constraints B are consistent.

Proof Let us prove the proposition inductively on the number of actions
in A.
Base step: for A = {a0, a1, a∞}, there is just a single sequence of totally
ordered actions. Since π has no flaw, every precondition of a1 is satisfied by
a causal link with a0, that is the initial state, and every goal or precondition
of a∞ is satisfied by a causal link with a0 or a1.
Induction step: assume the proposition to hold for any plan having (n− 1)
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actions. Consider a plan π with n actions and without a flaw. Let Ai =
{ai1, ..., aik} be a subset of actions whose only predecessor in the partial
order ≺ is a0. Every totally ordered sequence of actions of π satisfying ≺
starts necessarily with some action ai from this subset. Since π has no flaw,
all preconditions of ai are met by a causal link with a0. Hence every instance
of action ai is applicable to the initial state corresponding to a0.

Let [a0, ai] denotes the first state of Σ after the execution of ai in state s0,
and π′ = (A′,≺′, B′, L′) be the remaining plan. That is, π′ is obtained from
π by replacing a0 and ai with a single action (in the plan space notation) that
has no precondition and whose effects correspond to the first state [a0, ai],
and by adding to B the binding constraints due to this first instance of ai.
Let us prove that π′ is a solution.

• ≺′ is consistent since no ordering constraint has been added from π to π′;
• B′ is consistent since new binding constraints where consistent with B;
• π′ has no threat since no action has been added in π which had no threat;
• π′ has no subgoal: every precondition of π that was satisfied by a causal

link with an action a += a0 is still supported by the same causal link in π′.
Consider a precondition p supported by a causal link 〈a0

p−→ aj〉, since ai

was not a threat in π then effects of any consistent instance of ai do not
interfere with p. Hence condition p is satisfied in the first state [a0, ai].
The causal link in π′ is now 〈[a0, ai]

p−→ aj〉.

Hence π′ has (n − 1) actions without a flaw: by induction it is a solution
plan. !

Figure 5.5: A solution plan.

Example 5.9 Let us augment the previous example with actions:
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• move(r1,l1,l2)

• unload(c1,r1,G2)

• put(c1,p2, G2)

The corresponding plan (Figure 5.5, where causal links are not shown) is a
solution. !

Finally let us remark that Definition 5.4 and Proposition 5.8 allow for two
types of flexibility in a solution plan: actions may not be totally ordered and
they may not be totally instantiated. This remark applies also to a∞, since
all actions in a partial have the same syntactical status. In other words, the
flexibility introduced allows to handle partially instantiated goals. Recall
that variables in a goal are existentially quantified. For example, any state
where there is a container c in the pile p2 meets a goal such as in(c, p2) (see
Exercise 5.4).

5.4 Algorithms for Plan Space Planning

5.4.1 PSP Procedure

The characterization of the set of solution plans gives the elements needed
for the design of planning algorithms in the plan space. Since π is a solution
when it has no flaw, the main principle is to refine π, while maintaining ≺
and B consistent, until it has no flaw. The basic operations for refining a
partial plan π towards a solution plan are the following:

• find the flaws of π, i.e., its subgoals and its threats;
• select one such a flaw;
• find ways for resolving it;
• choose a resolver for the flaw;
• refine π according to that resolver.

The resolvers of a flaw are defined such as to maintain the consistency of
≺ and B in any refinement of π with a resolver. When there is no flaw in
π, then the conditions of Proposition 5.8 are met, and π is a solution plan.
Symmetrically, when a flaw has no resolver, then π cannot be refined into a
solution plan.

Let us specify the corresponding procedure as a recursive nondeterminis-
tic schema, called PSP (for Plan Space Planning). The pseudo code of PSP
is given in figure 5.6. The variables and procedures used in PSP are:
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• flaws: denotes the set of all flaws in π provided by procedures OpenGoals
and Threats; φ is a particular flaw in this set;

• resolvers: denotes the set of all possible ways of resolving the current flaw
φ in plan π; it is given by procedure Resolve; the resolver ρ is an element
of this set;

• π′: is a new plan obtained by refining π according to resolver ρ using for
that procedure Refine.

PSP(π)
flaws ← OpenGoals(π) ∪ Threats(π)
if flaws = ∅ then return(π)
select any flaw φ ∈ flaws
resolvers ← Resolve(φ,π)
if resolvers = ∅ then return(failure)
nondeterministically choose a resolver ρ ∈ resolvers
π′ ← Refine(ρ,π)
return(PSP(π′))

end

Figure 5.6: PSP Procedure

The PSP procedure is called initially with the initial plan π0. Each
successful recursion is a refinement of the current plan according to a given
resolver. The choice of the resolver is a nondeterministic step. The correct
implementation of the “nondeterministically choose” step is the following:

• when a recursive call on a refinement with the chosen resolver returns a
failure, then another recursion is performed with a new resolver;

• when all resolvers have been tried out unsuccessfully then a failure is
returned from that recursion level back to a previous choice point, this is
equivalent to an empty set of resolvers.

Note that the selection of a flaw (step select) is a deterministic step. All
flaws need to be solved before reaching a solution plan. The order in which
flaws are processed is very important for the efficiency of the procedure, but
it is unimportant for its soundness and completeness. Before getting into
the properties of PSP, let us detail the 4 procedures that is uses.

OpenGoals(π): finds all subgoals in π. These are preconditions not supported
by a causal link. This procedure is efficiently implemented with an agenda
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data structure. For each new action a in π, all preconditions of a are added
to the agenda; for each new causal link in π the corresponding proposition
is removed from the agenda.

Threats(π): finds every action ak that is a threat on some causal link
〈ai

p−→ aj〉. This can be done by testing all triples of actions in π, which
takes O(n3). Here also an incremental processing is more efficient. For each
new action in π, all causal links not involving that action are tested (in
O(n2)). For each new causal link, all actions in π, but those of the causal
link, are tested (in O(n), n being the current number of actions in π).

Resolve(φ,π): finds all ways of solving a flaw φ.

• If φ is a subgoal for a precondition p of some action aj , then its resolvers
are either of the following:

- A causal link 〈ai
p−→ aj〉 if there is an action ai already in π whose

effect can provide p. This resolver contains 3 elements: the causal link,
the ordering constraint (ai ≺ aj) if consistent with ≺, and the binding
constraints to unify p with the effect of ai.

- A new action a that can provide p. This resolver contains a together
with the corresponding causal link, the ordering and binding constraints,
including the constraints (a0 ≺ a ≺ a∞) required for a new action. Note
that there is no need here to check the consistency of these constraints
with ≺ and B.

• If φ is a threat on causal link 〈ai
p−→ aj〉 by an action ak that as an effect

¬q, and q is unifiable with p, then its resolvers are any of the following:2

- The constraint (ak ≺ ai), if consistent with ≺, i.e., ordering ak before
the causal link,

- The constraint (aj ≺ ak), if consistent with ≺, i.e., ordering ak after
the causal link,

- A binding constraint consistent with B that makes q and p non-unifiable.

Note that another way of addressing a threat is to choose for a causal link
an alternate provider a′i that has no threat. Replacing ai with a′i as the
provider for aj can be done through backtracking.

Refine(ρ,π): refines the partial plan π with the elements in the resolver,
adding to π an ordering constraint, one or several binding constraints, a

2These three resolvers are called respectively promotion, demotion and separation.
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Figure 5.7: Organization of PSP.

causal link, and/or a new action. This procedure is straightforward: no
testing needs to be done, since we have checked, while finding a resolver,
that the corresponding constraints are consistent with π. Refine has just
to maintain incrementally the set of subgoals in the agenda and the set of
threats.

The two previous procedures perform several query and update opera-
tions on the two sets of constraints ≺ and B. It is preferable to have these
operations carried out by specific constraints managers. Let us describe
them briefly.

The Ordering constraint manager handles query and update operations. The
former include querying whether a constraint (a ≺ a′) is consistent with ≺,
or asking for all actions in A that can be ordered after some action a. The
update operations consist of adding a consistent ordering constraint, and
removing one or several ordering constraints, which is useful for backtracking
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on a refinement. The alternatives for performing these operations are either
of the following:

• To maintain as an explicit data structure only input constraints, in that
case updates are trivial, in O(1), whereas queries require a search in O(n2),
n being the number of constraints in ≺.

• To maintain the transitive closure of ≺. This makes queries easy, in O(1),
but requires an O(n2) propagation for each new update; a removal is
performed on the input constraints plus a complete propagation.

In planning there are usually more queries than updates, hence the later
alternative is preferable.

The Binding constraint manager handles three types of constraints on vari-
ables over finite domains: (i) unary constraints x ∈ Dx, (ii) binary con-
straints x = y, and (iii) x += y. Types (i) and (ii) are easily managed through
a Union-Find algorithm in time linear in the number of query and update
operations, whereas type (iii) rises a general NP-complete CSP problem.3

The global organization of the PSP procedure is depicted in Figure 5.7.
The correct behavior of PSP is based on the nondeterministic step for choos-
ing a resolver for a flaw and for backtracking over that choice, when needed,
through all possible resolvers. The order on which resolvers are tried out is
important for the efficiency of the algorithm. This choice has to be heuris-
tically guided.

The order in which the flaws are processed (the step select for selecting
the next flaw to be resolved) is also very important for the performance of
the algorithm, even if no backtracking is needed at this point. A heuristic
function is again essential for guiding the search.

Proposition 5.10 The PSP procedure is sound and complete: whenever π0

can be refined into a solution plan, PSP(π0) returns such a plan.

Proof Let us first prove the soundness, then the completeness.
In the initial π0, the sets of constraints in ≺ and B are obviously con-

sistent. The Resolve procedure is such that every refinement step uses a
resolver that is consistent with ≺ and B. Consequently, the successful ter-
mination step of PSP returns a plan π that has no flaw and whose sets of
constraints in ≺ and B are consistent. According to Proposition 5.8, π is

3For example, the well known NP-complete graph coloring problem is directly coded
with type (iii) constraints.
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a solution plan, hence PSP is sound. In order to prove the completeness of
this nondeterministic procedure, we must show that there is at least one of
its execution traces that returns a solution, when there is one. Let us prove
it inductively on the length k of a solution plan.
Base step, for k = 0: if the empty plan is a solution to the problem, then
π0 has no flaw and PSP returns immediately this empty plan.
Induction step: assume that PSP is complete for planning problems that
have solutions of length (k − 1), and assume that the problem at hand
P = (O, s0, g) admits a solution 〈a1, . . . , ak〉 of length k. Since ak is rel-
evant for the goal g, then there is at least one trace of PSP that chooses
(and partially instantiate) an operator a′k to address the flaws in π0, such
that ak is an instance of a′k. Let [a′k, a∞] be the set of goal propositions
(in plan-space notation) corresponding to γ−1(g, a′k). The next recursion of
PSP takes place on a partial plan π1 that has three actions {a0, a′k, a∞}.
π1 is equivalent to the initial plan of a problem from the state s0 to a goal
given by [a′k, a∞]. This problem admit 〈a1, . . . , ak−1〉 as a solution of length
(k − 1). By induction, the recursion of PSP on π1 has an execution trace
which finds this solution. !

An important remark is in order. Even with the restrictive assumption
of a finite transition system (assumption A0 in Section 1.5) the plan space
is not finite. A deterministic implementation of the PSP procedure will
maintain the completeness only if it guarantees to explore all partial plans,
up to some length. It has to rely, for example, on an iterative deepening
search, such as IDA*, where a bound on the length of the sought solution
is progressively increased. Otherwise, the search may keep exploring deeper
and deeper a single path in the search space, adding indefinitely new actions
to the current partial plan and never backtracking. Note that a search with
an A* algorithm is also feasible as long as the refinement cost from one
partial plan to the next is not null.

5.4.2 PoP Procedure

The PSP procedure is a generic schema that can be instantiated into sev-
eral variants. Let us describe briefly one of them, algorithm PoP, which
corresponds to a popular implementation for a planner in the plan space.

The pseudo code for PoP is given in figure 5.8. It is specified as a
nondeterministic recursive procedure. It has two arguments: π = (A,≺
, B, L) the current partial plan, and agenda which is a set of couples 〈a, p〉,
a being an action in A and p a precondition of a which is a subgoal. The
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PoP(π, agenda) ;; where π = (A,≺, B, L)
if agenda = ∅ then return(π)
select any pair 〈aj , p〉 in and remove it from agenda
relevant ← Providers(p, π)
if relevant = ∅ then return(failure)
nondeterministically choose an action ai ∈ relevant
L ← L ∪ {〈ai

p−→ aj〉}
update B with the binding constraints of this causal link
if ai is a new action in A then do:

update A with ai

update ≺ with (ai ≺ aj), (a0 ≺ ai ≺ a∞)
update agenda with all preconditions of ai

for each threat on 〈ai
p−→ aj〉 or due to ai do:

resolvers ← set of resolvers for this threat
if resolvers = ∅ then return(failure)
nondeterministically choose a resolver in resolvers
add that resolver to ≺ or to B

return(PoP(π, agenda))
end

Figure 5.8: Procedure PoP

arguments of the initial call are π0 and an agenda containing a∞ with all its
preconditions.

PoP uses a procedure called Providers that finds all actions, either in A
or new instances of planning operators of the domain, that have an effect q
unifiable with p, this set of actions is denoted relevant for the current goal.

There is a main difference between PSP and PoP. PSP processes the
two types of flaws in a similar way: at each recursion it selects heuristically
a flaw from any type to pursue the refinement. The PoP procedure has a
distinct control for subgoals and for threats. At each recursion, it first refines
with respect to a subgoal, then it proceeds by solving all threats due to the
resolver of that subgoal. Consequently, there are two nondeterministic steps:
(i) the choice of a relevant action for solving a subgoal, and (ii) the choice
of an ordering or a binding constraints for solving a threat.

Backtracking for these two nondeterministic steps is performed chrono-
logically, i.e., by going over all resolvers for a threat, and if none of them
works then backtracking to another resolver for the current subgoal. Note
that a resolver for a threat is a single constraint to be added to either ≺ or
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B.

5.5 Extensions

The PoP procedure is a simplified version of a planner called UCPOP that
implements many of the extensions of the classical representation introduced
in Section 2.4. Let us mention here briefly how plan-space planning can
handle some of these extensions.

Conditional Operators. Recall that a conditional operator has, in ad-
dition to normal preconditions and effects, some conditional effects that
depend on whether an associated antecedent condition holds in the state s
to which the operator is applied. In order to handle a conditional operator
two changes in the PoP procedure are required:

• The Providers procedure may find an action that provides p conditionally.
If this is the action chosen in relevant then the antecedent on which p
conditionally depends need to be added to the agenda, along with the
other unconditional preconditions of the action.

• An action ak can be a “conditional threat” on a causal link 〈ai
p−→ aj〉,

when the threatening effect is a conditional effect of ak. In that case, there
is another set of possible resolvers for this threat. In addition to ordering
and binding constraints, here one may also solve the threat by adding to
the agenda, as a precondition of ak, the negation of a proposition in the
antecedent condition of the threat. By making the antecedent condition
false, one is sure that ak cannot be a threat to the causal link. Note that
there can be several such resolvers.

Disjunctive Preconditions. They correspond to a syntactical facility
that allows to specify in a concise way several operators into a single one.
They are in principle “easy” to handle although they lead to an exponentially
larger search space. Whenever the pair selected in the agenda corresponds
to a disjunctive precondition, a nondeterministic choice takes place. One
disjunct is chosen for which relevant providers are sought, and the procedure
is pursued. The other disjuncts of the precondition are left as a possible
backtrack point.

Quantified Conditional Effects. Under the assumption of a finite Σ
a quantified expression can be expanded into a finite ground expression.
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This expansion is made easier when each object in the domain is typed (see
Section 2.4).

5.6 Plan Space Versus State Space Planning

The search space is a critical aspect for the types of plans that can be
synthesized and for the performance of a planner. Here are some of the
ways in which plan-space planning compares to state-space planning:

• A partial plan separates the choice of the actions that need to be done
from how to organize them into a plan except from the intrinsic ordering
and binding constraints of the chosen actions. In state-space planning,
the ordering of the sequence of actions reflects these constraints as well as
the control strategy of the planner.

• The plan structure and the rationale for the plan’s components are explicit
in the plan space: causal links give the role of each action with respect to
goals and preconditions. It is easy to explain a partial plan to a user. A
sequence generated by a state-space planner is less explicit with regards
to this causal structure.

• The state space is finite (under assumption A0), while the plan space is
not, as discussed earlier.

• Intermediate states are explicit in state-space planning, while there are
no states in the plan space.

• Nodes of the search space are more complex in the plan space than states.
Refinement operations for a partial plan take significantly longer to com-
pute than state transitions or state regressions.

Despite the extra cost for each node, plan-space planning appeared for
a while to be a significant improvement over state-space planning, leading
to a search exploring smaller spaces for several planning domains [49, 536].

However, partial plans have an important drawback: the notion of ex-
plicit states along a plan is lost. Recent state-space planner have been able
to significantly benefit from this advantage by making a very efficient use of
domain-specific heuristics and control knowledge. This has enabled state-
space planning to scale up to very large problems. There are some attempts
to generalize these heuristics and control techniques to the plan-space plan-
ning [412]. However, it appears to be harder to control plan-space planners



110 Part I, Chapter 5

as efficiently as state-space ones because of the lack of explicit states.4 In
summary, plan-space planners are not today competitive enough in classical
planning with respect to computational efficiency. Nevertheless, plan-space
planners keep other advantages:

• They build partially ordered and partially instantiated plans that are more
explicit and flexible for execution.

• They provide an open planning approach for handling several extensions to
the classical framework, such as time, resources and information gathering
actions. In particular planning with temporal and resource constraints can
be brought as natural generalization of the PSP schema (see chapter 14).

• They allow distributed planning and multi-agent planning to be addressed
very naturally, since different types of plan-merging operations are easily
defined and handled on the partial plan structure.

A natural question then arises: is it possible to blend state-space and
plan-space into an approach that keeps the best of the two words? The
planner called FLECS [519] provides an affirmative answer. The idea in
FLECS is to combine the least-commitment principle with what is called an
eager commitment strategy. The former chooses new actions and constraints
in order to solve flaws in a partial plan π, as it is done PSP. The latter
maintains a current state s; whenever there is in π an action a applicable
to s that has no predecessor in ≺ except a0, it chooses to progress from
s to the successor state γ(s, a). Flaws are assessed with respect of this
new current state. At each recursion, FLECS introduces a flexible choice
point between eager or least commitment: it chooses nondeterministically
either to progress on the current state or to solve some flaw in the current
partial plan. The termination condition is an empty set of flaws. In a way,
FLECS applies to plan-space planning the idea of the STRIPS procedure
in state-space planning (see Exercise 5.10). However, unlike STRIPS, the
procedure is sound and complete, providing the flexible choice between eager
or least commitment is a backtrack point. Several interesting heuristics for
guiding this choice, and in particular an abstraction driven heuristic can be
considered [516].

4For more detail, see Part III about the heuristics control issues, and in particular
Section 9.4 on heuristics for plan-space planning.
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5.7 Discussion and Historical Remarks

The shift from state-space to plan-space planning is usually attributed to
Sacerdoti [449], who developed a planner called NOAH [448] that has also
been a seminal contribution to task reduction or Hierarchical Task Network
(HTN) planning (see Chapter 11). Interestingly, the structure of a partial
plan emerged progressively from another contribution to HTN planning,
the NONLIN planner [494], which introduced causal links.5 NONLIN raised
the issue of linear versus nonlinear planning, that stayed for a while as an
important and confusing debate issue in the field. The linear adjective for
a planner referred confusingly in different papers either to the structure of
the planner’s current set of actions (a sequence instead of a partial order),
or to its search strategy that addresses one goal after the previous one has
been completely solved.

The issue of interacting goals in a planning problem and how to handle
them efficiently has been a motivating concern for the study of the plan-
space. Starting from [493] and the so-called Sussman anomaly (see Example
4.5), several authors such as [157, 259, 282, 48] discussed this issue.

In the context of plan-space planning, [438] introduced a distinction
between problems with fully independent goals, serializable goals, and ar-
bitrarily interacting goals. The first category is the easiest to handle. In
the second category, there is an ordering for solving the goals without vio-
lating the previously solved ones. If the goals are addressed in this correct
order, then the planning complexity grows linearly in the number of goals.
This goal dependence hierarchy is further refined in the context of plan-
space planning by [49] where the authors introduce a planner-dependent
notion of trivially and laboriously serializable goals; according to their anal-
ysis plan-space planners have the advantage of more often leading to trivial
serializable goals that are easily solved.

The truth criterion in a partial plan has been another major debate is-
sue in the field. In state-space planning, it is trivial to check whether some
condition is true or not in some current state. But plan-space planning does
not keep explicit states. Hence it is less easy to verify if a proposition is
true before or after the execution of an action in a partially ordered and
partially instantiated set of actions. The so-called Modal Truth Criterion
(MTC) [114] provided a necessary and sufficient condition for the truth of
a proposition at some point in a partial plan π. A planner called TWEAK
relied at each recursion on the evaluation of this MTC criterion for synthe-

5See [288] for a comparative analysis of plan-space and HTN planning.
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sizing a plan in the plan-space. It was shown that if π contains actions with
conditional effects, then the evaluation of the MTC is an NP-hard problem.
This complexity result led to a belief that plan-space planning with extended
representation is impractical. However, this belief is incorrect since planning
does not require a necessary and sufficient truth condition. It only has to
enforce a sufficient truth condition, which basically corresponds in PSP to
the identification and resolution of flaws, performed in polynomial time. A
detailed analysis of the MTC in planning appears in [294].

The UCPOP planner of Penberthy and Weld [424, 536] has been a major
contribution to plan-space planning. It builds on the advances brought by
SNLP [369], an improved formalization TWEAK, to propose a proven sound
and complete planner able to handle most of the extensions to the classical
representation introduced in the Action Description Language ADL of Ped-
nault [421, 422]. The well documented open source Lisp implementation of
UCPOP [47] offers several enhancements such as domain axioms and control
rules. The latter even incorporate some of the learning techniques developed
in the state-space planner PRODIGY [378, 516] for acquiring control knowl-
edge [47].

The work on UCPOP opened to way to several other extensions such
as handling incomplete information and sensing actions [426, 175, 226] or
managing extended goals with protection conditions that guarantee a plan
meeting some safety requirements [538] (see Part V). Issues such as the ef-
fects of domain features on the performance of the planner [317] and the role
of ground actions (that is an early commitment as opposed to the late com-
mitment strategy) [555] have been studied. Recent implementations, such as
HCPOP [208], offer quite effective search control and pruning capabilities.
The study of the relationship between state-space and plan-space exempli-
fied in the FLECS planner [519] follows on several algorithmic contributions
such as [377, 379], and on studies that relate the performance of PSP to
specific features of the planning domain [317]. The work of Kambhampati
[287, 293] introduces a much wider perspective and a nice formalization that
takes into account many design issues such as multiple contributors to a goal
or systematicity [286], i.e. whether a planner is non redundant and does not
visit a partial-plan in the space more than once.

5.8 Exercises

5.1 Here is a partial plan generated by PSP for the variable-interchange
problem described in Exercise 4.7:
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(a) How many threats are there?

(b) How many children (immediate successors) would this partial plan
have?

(c) How may different solution plans can be reached from this partial
plan?

(d) How many different irredundant solution plans can be reached from
this partial plan?

(e) If we start PSP running from this plan, can it ever find any redundant
solutions?

(f) Trace the operation of PSP starting from this plan, along whichever
execution trace finds the solution that has the smallest number of
actions.

5.2 Trace the PSP procedure step by step on Example 5.1, from Figure 5.2
to figure 5.5.

5.3 Trace the operation of PSP on the Sussman anomaly (Example 4.5).

5.4 Trace the PSP procedure on the problem that has a single partially
instantiated goal in(c, p2) with an initial state similar to that of Figure 5.1
except that location l1 has two piles p0 and p1, p0 has a single container c0
and p1 has a container c1.

5.5 Let P be a planning problem in which no operator has any negative
effects.

(a) What part(s) of PSP will be unneeded to solve P?

(b) Suppose we run PSP deterministically, with a best-first control strat-
egy. When, if at all, will PSP have to backtrack?
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5.6 Consider the following “painting problem.” We have a can of red paint
c1, a can of blue paint c2, two paint brushes r1 and r2, and four unpainted
blocks b1, b2, b3, b4. We want to make b1 and b2 red, and make b3 and b4
blue. Here is a classical formulation of the problem:

s0 ={can(c1), can(c2), color(c1,red), color(c2,blue), brush(r1), brush(r2),
dry(r1), dry(r2), block(b1), block(b2), dry(b1), dry(b2), block(b3),
block(b4), dry(b3), dry(b4)}

g ={color(b1,red), color(b2,red), color(b3,blue), color(b4,blue)}

dip-brush(r,c,k)
precond: brush(r), can(c), color(c,k)
effects: ¬dry(r), canpaint(r,k)

paint(b,r,k)
precond: block(b), brush(r), canpaint(r,k)
effects: ¬dry(b), color(b,k), ¬canpaint(r,k)

(a) In the paint operator, what is the purpose of the effect ¬canpaint(r,k)?

longer be

(b) Starting from the initial state, will PSP ever generate the follow-
ing partial plan? Explain why or why not. would either constrain
paint(b2,r1,red) to come after paint(b1,r1,red) or vice versa,

(c) What threats are there in the partial plan?

vice versa.

(d) Starting from the partial plan, resolve all of the open goals without
resolving any threats. What threats are there in the plan now?
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(e) If we start PSP running with this plan as input, will PSP generate any
successors? Explain why or why not.

(f) If we start PSP running with this plan as input, will PSP find a solu-
tion? Explain why or why not.

5.7 Dan wants to wash his clothes with a washing machine wm, wash his
dishes in a dishwasher dw, and bathe in a bathtub bt. The water supply
doesn’t have enough pressure to do more than one of these at once. Here is
a classical representation of the problem:

Initial state: status(dw,ready), status(wm,ready), status(bt,ready),
clean(dan,0), clean(clothes,0), clean(dishes,0),
loc(dishes,dw), loc(clothes,wm), loc(dan,bt), use(water,0)

Goal formula: clean(clothes,1), clean(dishes,1), clean(dan,1)

Operators:
start-fill(x)
precond: status(x,ready), use(water,0)
effects: status(x,fill),

use(water,1)

end-fill(x)
precond: status(x,fill)
effects: status(x,full),

use(water,0)

start-wash(x)
precond: status(x,full)
effects: status(x,wash)

end-wash(x, y)
precond: status(x,wash)
effects: status(x,ready), clean(y,1)

replacing each atom p(x, y) with p(x) = y.

(a) Let π1 be the following partial plan. What threats are in π1?

(b) What flaws are in π1 other than threats?
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(c) How many different solutions can PSP find if we start it out with the
plan π1, and do not allow it to add any new actions to the plan?
Explain your answer.

can resolve threats to the three different use(water,0) preconditions.

(d) How many different solutions can PSP find if we do allow it to add
new actions to π1? Explain your answer.

actions to establish the unestablished preconditions.

5.8 Let P = (O, s0, g) and P ′ = (O, s0, g′) be the statements of two plan-
ning problems having the same operators and initial state. Let B and B′ be
the search spaces for PSP on P and P ′, respectively.

(a) If g ⊆ g′, then is B ⊆ B′?

(b) If B ⊆ B′ then is g ⊆ t′?

(c) Under what conditions, if any, can we guarantee that B is finite?

(d) How does your answer to part (c) change if we run PSP deterministi-
cally with a breadth-first control strategy?

(e) How does your answer to part (c) change if we run PSP deterministi-
cally with a depth-first control strategy?

5.9 Run the HCPOP plan-space planner [208] on several problems of the
DWR domain of Example 2.11. At which point in the number of containers,
locations, or robots, the planner is overwhelmed?

5.10 Discuss the commonalities and differences of FLECS and STRIPS.
Why is the former complete while the latter is not?
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Introduction to Neoclassical
Planning

Neoclassical planning, like classical planning, is also concerned with re-
stricted state-transition systems. We will be using here the classical rep-
resentations developed in Chapter 2. However, at a time when classical
planning appeared to be stalled for expressiveness as well as for complex-
ity reasons, the techniques discussed in this part, that we qualify as neo-
classical,6 led to a revival of the research on classical planning problems.
The development of neoclassical techniques brought new search spaces and
search algorithms for planning that allowed directly, or indirectly through
improvement of classical techniques, a significant scale-up on the size of
classical problems that could be solved.

The main differences between classical and neoclassical techniques are
the following:

• In classical planning, every node of the search space is a partial plan,
i.e., a sequence of actions in the state-space, or a partially ordered set of
actions in the plan-space; any solution reachable form that node contains
entirely all the actions this partial plan.

• In neoclassical planning, every node of the search space can be viewed as
a set of several partial plans. This set is either explicit or implicit in the
data structures that make a search node, but it is evident in the fact that
in the neoclassical approaches, not every action in a node appears in a
solution plan reachable from that node.7

6Neoclassic : of or relating to a revival or adaptation of the classical style, especially in
literature, art, or music [Webster New Collegiate Dictionary]. Neoclassical has referred to
slightly different meanings in planning literature depending on one’s views of where and
when the revival took place.

7Because of this property, neoclassical planning approaches have sometimes been called
disjunctive-refinement approaches [297].
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We will come back to this common feature in Part III, once the reader
has become familiar with the neoclassical techniques. Three such techniques
will be studied here:

• planning-graph techniques, which are based on a powerful reachability
structure for a planning problem, called a planning graph, which is used
to efficiently organize and constrain the search space;

• propositional satisfiability techniques, which encode a planning problem
into a SAT problem and then relies on efficient SAT procedures for finding
a solution, among which complete methods based on the Davis-Putnam
procedure, and pseudo-random local search methods;

• constraint satisfaction techniques, which similarly enable to encode a plan-
ning problem into a constraint satisfaction problem, and that also bring
to the field a variety of efficient methods, in particular filtering and con-
straint propagation for disjunctive refinements in the plan-space or within
the planning-graph approaches.

These three techniques are described in Chapters 6, 7, and 8, respec-
tively.
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Planning-Graph Techniques

6.1 Introduction

The planning-graph techniques developed in this chapter rely on the classical
representation scheme.1 These techniques introduce a very powerful search
space, called a “planning graph”, which departs significantly from the two
search spaces presented earlier, the state space (Chapter 4) and the plan
space (Chapter 5).

State space planners provide a plan as a sequence of actions. Plan space
planners synthesize a plan as a partially ordered set of of actions, any se-
quence meeting the constraints of the partial order is a valid plan. Planning-
graph approaches take a middle ground. Their output is a sequence of
subsets of actions, e.g., 〈{a1, a2}, {a3, a4}, {a5, a6, a7}〉, which represents all
sequences starting with a1 and a2 in any order, followed by a3 and a4 in
any order, followed by a5, a6 and a7 in any order. A sequence of subsets
of actions is obviously more general than a sequence of actions: there are
2 × 2 × 6 = 24 sequences of actions in the previous example. However, a
sequence of subsets is less general than an partial order. It can be expressed
immediately as a partial order, but the converse is false, e.g., a plan with
3 actions a1, a2 and a3 and a single ordering constraint a1 ≺ a3 cannot be
structured as a sequence of subsets, unless an additional constraint is added.

We have seen that the main idea behind plan-space planning is the least
commitment principle: that is to refine a partial plan, one flaw at a time,
by adding only the ordering and binding constraints needed for solving that

1The Graphplan algorithm assumes, for notational convenience, a somewhat restricted
but theoretically equivalent representation, with no negated literals in preconditions of
operators nor in goals; this restriction is easily relaxed.
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flaw. Planning-graph approaches on the other hand make strong commit-
ments while planning: actions are considered fully instantiated and at spe-
cific steps. These approaches rely instead on two powerful and interrelated
ideas, that are:

• reachability analysis, and
• disjunctive refinement.

Disjunctive refinement consists of addressing one or several flaws through
a disjunction of resolvers. Since in general flaws are not independent and
their resolvers may interfere, dependency relations are posted as constraints
to be dealt with at a later stage.

Disjunctive refinement may not appear right away to the reader as the
main motivation in planning-graph techniques. However, reachability anal-
ysis is clearly a driving mechanism for these approaches. Let us detail its
principles before getting into planning graph algorithms.

6.2 Planning Graphs

6.2.1 Reachability Trees

Given a set A of actions, a state s is reachable from some initial state s0

if there is a sequence of actions of A that defines a path from s0 to s.
Reachability analysis consists of analyzing which states can be reached from
s0 in some number of steps, and how to reach them. Reachability can be
computed exactly, through a reachability tree that gives Γ̂(s0), or it can
be approximated through a structure called a planning graph that will be
developed in this section. Let us first introduce an example.

Example 6.1 Consider a Simplified DWR domain with no piles and no
cranes where robots can load and unload autonomously containers, and
where locations may contain an unlimited number of robots. In this domain,
let us define a problem (see Figure 6.1) with two locations loc1 and loc2,
two containers conta and contb and two robots robr and robq. Initially, robr
and conta are in location loc1, robq and contb are in loc2. The goal is to
have conta in loc2 and contb in loc1. Here, the set A has twenty actions
corresponding to the instances of the three operators in Figure 6.1.

To simplify the forthcoming figures, let us denote ground instances of
predicates by propositional symbols:

• r1 and r2 stand for at(robr, loc1) and at(robr, loc2);
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move(r, l, l′) ;; robot r at location l moves to a connected location l′

precond : at(r, l), adjacent(l, l′)
effects : at(r, l′),¬ at(r, l)

load(c, r, l) ;; robot r loads container c at location l
precond : at(r, l), in(c, l), unloaded(r)
effects : loaded(r, c),¬ in(c, l),¬ unloaded(r)

unload(c, r, l) ;; robot r unloads container c at location l
precond : at(r, l), loaded(r, c)
effects : unloaded(r), in(c, l),¬ loaded(r, c)

Figure 6.1: A simplified DWR problem.

• q1 and q2 stand for at(robq, loc1) and at(robq, loc2);
• a1, a2, ar and aq stand respectively for container conta in location loc1,
in location loc2, loaded on robr or loaded on robq;

• b1, b2, br and bq stand for the possible positions of container contb;
• ur and uq stand for unloaded(robr) and unloaded(robq).

Let us also denote the twenty actions in A as follows:

• Mr12 is the action move(robr, loc1, loc2), Mr21 the opposite move, Mq12
and Mq21 are the move actions of robot robq;

• Lar1 is the action load(conta, robr, loc1), Lar2, Laq1 and Laq2 are the
other load actions for conta in loc2 and with robq respectively; Lbr1, Lbr2,
Lbq1 and Lbq2 are the load actions for contb; and

• Uar1, Uar2, Uaq1, Uaq2, Ubr1, Ubr2, Ubq1, Ubq2 are the unload actions.

The reachability tree for this domain, partially developed down to level 2
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Figure 6.2: Reachability tree.

from the initial state {r1, q2, a1, b2, ur, uq}, is shown in figure 6.2. !

A reachability tree is a tree T whose nodes are states of Σ and whose
edges corresponds to actions of Σ. The root of T is the state s0. The
children of a node s are all the states in Γ(s). A complete reachability tree
from s0 gives Γ̂(s0). A reachability tree developed down to depth d solves
all planning problems with s0 and A, for every goal that is reachable in d or
fewer actions: a goal is reachable from s0 in at most d steps if and only if it
appears in some node of the tree. Unfortunately, a reachability tree blows
up in O(kd) nodes, where k is the number of valid actions per state.

Since some nodes can be reached by different paths, the reachability tree
can be factorized into a graph. Figure 6.3 illustrates such a reachability
graph down to level 2 for the previous example (omitting for clarity most of
back arcs from a node to its parents). However, even this reachability graph
would be of a very large impractical size, as large as the number of states
in the domain.

6.2.2 Reachability with Planning Graphs

A major contribution of the Graphplan planner is a relaxation for the reach-
ability analysis. The approach provides an incomplete condition of reacha-
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Figure 6.3: Reachability graph.

bility through a structure called a planning graph. A goal is reachable from
s0 only if it appears in some node of the planning graph. However, this
is not a sufficient condition anymore. This weak reachability condition is
compensated for by a low complexity: the planning graph is of polynomial
size and can be built in polynomial time in the size of the input.

The basic idea in a planning graph is to consider at every level of this
structure not individual states but, to a first approximation, the union of
sets of propositions in several states. Instead of mutually exclusive actions
branching out from a node, it considers an inclusive disjunction of actions
from one node to the next which contains all the effects of these actions. In a
reachability graph a node is associated with the propositions that necessarily
hold for that node. In a planning graph, a node contains propositions that
possibly hold at some point. However, while a state is a consistent set of
propositions, the union of sets of propositions for several states does not
preserve consistency. In the previous example we would have propositions
showing robots in two places, containers in several locations, etc. Similarly,
not all actions within a disjunction are compatible, they may interfere. A
solution to that is to keep track of incompatible propositions for each set
of propositions, and of incompatible actions for each disjunction of actions.
Let us explain informally how this is performed.



126 Part II, Chapter 6

Figure 6.4: Planning graph.

A planning graph is a directed layered graph: arcs are permitted only
from one layer to the next. Nodes in level 0 of the graph correspond to the
set P0 of propositions denoting the initial state s0 of a planning problem.
Level 1 contains two layers, called an action level A1 and a proposition level
P1:

• A1 is the set of actions (ground instances of operators) whose precondi-
tions are nodes in P0,

• P1 is defined as the union of P0 and the sets of positive effects of actions
in A1.

An action node in A1 is connected with incoming precondition arcs from
its preconditions in P0, with outgoing arcs to its positive effects and to its
negative effects in P1. Outgoing arcs are labeled as positive or as negative.
Note that negative effects are not deleted from P1, thus P0 ⊆ P1.2 This
process is pursued from one level to the next. This is illustrated in Figure 6.4
for the above example down to level 3 (dashed lines correspond to negative
effects, not all arcs are shown).

In accordance with the idea of inclusive disjunction in Ai and of union
of propositions in Pi, a plan associated to a planning graph is not any more

2The persistence principle or “frame axiom,” which states that unless it is explicitly
modified, a proposition persists from one state to the next, is modeled here through this
definition that makes P0 ⊆ P1.
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a sequence of actions corresponding directly to a path in Σ, as defined in
Chapter 2. Here, a plan Π is sequence of sets of actions Π = 〈π1,π2, . . . ,πk〉.
It will be qualified as a layered plan since it is organized into levels corre-
sponding to those of the planning graph, with πi ⊆ Ai. The first level π1 is
a subset of “independent” actions in A1 that can be applied in any order to
the initial state and can lead to a state which is a subset of P1. From this
state, actions in π2 ⊆ A2 would proceed, and so on until a level πk, whose
actions lead to a state meeting the goal. Let us define these notions more
precisely.

6.2.3 Independent actions and Layered Plans

In our example, the two actions Mr12 (that is, move(r, loc1, loc2)) and Mq21
in A1 are independent : they can appear at the beginning of a plan in any
order, and the two sequences 〈Mr12,Mq21〉 and 〈Mq21,Mr12〉 when ap-
plied to s0 lead to the same state. Similarly for the pair Mr12 and Lbq2.
But the two actions Mr12 and Lar1 are not independent: a plan starting
with Mr12 will be in a state where Lar1 is not applicable. More formally:

Definition 6.2 Two actions (a, b) are independent iff:
effects–(a) ∩ [precond(b) ∪ effects+(b)] = ∅ and
effects–(b) ∩ [precond(a) ∪ effects+(a)] = ∅.

A set of actions π is independent when every pair of π is independent. !

Conversely, two actions a and b are dependent if either:

• a deletes a precondition of b: the ordering a ≺ b will not be permitted;
• a deletes a positive effect of b: the resulting state will dependent on their

order;
• symmetrically for negative effects of b with respect to a.

Note that the independence of actions is not specific to a particular planning
problem: it is an intrinsic property of the actions of a domain that can be
computed before hand for all problems of that domain.

Definition 6.3 A set π of independent actions is applicable to a state s iff
precond(π) ⊆ s. The result of applying the set π to s is defined as:
γ(s,π) = (s− effects–(π)) ∪ effects+(π), where:

precond(π) =
⋃
{precond(a) | ∀a ∈ π},

effects+(π) =
⋃
{effects+(a) | ∀a ∈ π}, and

effects–(π) =
⋃
{effects–(a) | ∀a ∈ π}. !
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Proposition 6.4 If a set π of independent actions is applicable to s then,
for any permutation 〈a1, . . . , ak〉 of the elements of π, the sequence 〈a1, . . . , ak〉
is applicable to s, and the state resulting from the application of π to s is
such that: γ(s,π) = γ(. . . γ(γ(s, a1), a2) . . . ak).

This proposition (whose proof is left as the Exercise 6.5) allows us to
go back to the standard semantics of a plan as a path in a state transition
system from the initial state to a goal.

Definition 6.5 A layered plan is a sequence of sets actions. The layered
plan Π = 〈π1, . . . ,πn〉 is a solution to a problem (O, s0, g) iff each set πi ∈ Π
is independent, and the set π1 is applicable to s0, π2 is applicable to γ(s0,π1),
. . . , etc, and g ⊆ γ(. . . γ(γ(s0,π1),π2) . . .πn). !

Proposition 6.6 If Π = 〈π1, . . . ,πn〉 is a solution plan to a problem
(O, s0, g) then a sequence of actions corresponding to any permutation of
the elements of π1, followed by any permutation π2 . . . , followed by any
permutation of πn is a path from the s0 to a goal state.

This proposition follows directly from Proposition 6.4.

6.2.4 Mutual Exclusion Relations

Two dependent actions in the action level A1 of the planning graph cannot
appear simultaneously in the first level π1 of a plan. Hence, the positive
effects of two dependent actions in A1 are incompatible propositions in P1,
unless these propositions are also positive effects of some other independent
actions. In our example, r2 and ar are the positive effects respectively of
Mr12 and Lar1, and only of these dependent actions. These two proposi-
tions are incompatible in P1 in the following sense: they cannot be reached
through a single level of actions π1. Similarly for q1 and bq.

Furthermore, negative and positive effects of an action are also incom-
patible propositions. This is the case for the couple (r1, r2), (q1, q2), (ar, ur),
(bq, uq) in level P1 of the previous figure. In order to deal uniformly with
these second type of incompatibility between propositions, it is convenient
to introduce for each proposition p a neutral no-op action, noted αp, whose
precondition and sole effect is p.3 If an action a has p as a negative ef-
fect, then according to our definition, a and αp are dependent actions; their
positive effects are incompatible.

3Hence, the result of no-op actions is to copy all the propositions of Pi−1 into Pi: no-ops
are also a way of modeling the persistence principle.



Automated Planning 129

Dependency between actions in an action level Ai of the planning graph
leads to incompatible propositions in the proposition level Pi. Conversely,
incompatible propositions in a level Pi lead to additional incompatible ac-
tions in the following level Ai+1. These are the actions whose preconditions
are incompatible. In our example, (r1, r2) are incompatible in P1. Conse-
quently Lar1 and Mr21 are incompatible in A2. Note that an action whose
preconditions are incompatible is simply removed from Ai+1. This is the
case for Uar2 (r2 and ar incompatible) and for Ubq2 in A2. Indeed, while
an incompatible pair in Ai is useful because one of its action may used in a
level πi of a plan, there is no sense in keeping an impossible action.

The incompatibility relations between actions and between propositions
in a planning graph, also called mutual exclusion or mutex relations, are
formally defined as follows:

Definition 6.7 Two actions a and b in a level Ai are mutex if either a and
b are dependent, or if a precondition of a is mutex with a precondition of b.
Two propositions p and q in Pi are mutex if every action in Ai that has p as
a positive effect (including no-op actions) is mutex with every action that
produces q, and there is no action in Ai that produces both p and q. !

Note that dependent actions are necessarily mutex. Dependency is an
intrinsic property of the actions in a domain, while the mutex relation takes
into account additional constraints of the problem at hand. For the same
problem, a pair of actions may be mutex in some action level Ai and become
non mutex in some latter level Aj of a planning graph.

Example 6.8 Mutex relations for the above example are listed in table 6.1,
giving for each proposition or action at every level the list of elements that
are mutually exclusive with it, omitting for simplicity the no-op actions
(a star “*” denotes mutex actions that are independent but have mutex
preconditions). !

In the rest of the chapter, we will denote the set of mutex pairs in Ai as
µAi, and the set of mutex pairs in Pi as µPi. Let us remark that:

• dependency between actions as well as mutex between actions or propo-
sition are symmetrical relations;

• for ∀i : Pi−1 ⊆ Pi, and Ai−1 ⊆ Ai

Proposition 6.9 If two propositions p and q are in Pi−1 and (p, q) /∈ µPi−1

then (p, q) /∈ µPi. If two actions a and b are in Ai−1 and (a, b) /∈ µAi−1

then (a, b) /∈ µAi.
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Table 6.1: Mutex actions and propositions.

Level Mutex elements
A1 {Mr12} ×{ Lar1}

{Mq21} ×{ Lbq2}
P1 {r2}×{ r1, ar}

{q1}×{ q2, bq}
{ar}×{ a1, ur}
{bq}×{ b2, uq}

A2 {Mr12} ×{ Mr21, Lar1, Uar1}
{Mr21} ×{ Lbr2, Lar1*, Uar1*}
{Mq12} ×{ Mq21, Laq1, Lbq2*, Ubq2*}
{Mq21} ×{ Lbq2, Ubq2}
{Lar1} ×{ Uar1, Laq1, Lbr2}
{Lbr2} ×{ Ubq2, Lbq2, Uar1, Mr12*}
{Laq1} ×{ Uar1, Ubq2, Lbq2, Mq21*}
{Lbq2} ×{ Ubq2}

P2 {br}×{ r1, b2, ur, bq, ar}
{aq}×{ q2, a1, uq, bq, ar}
{r1}×{ r2}
{q1}×{ q2}
{ar}×{ a1, ur}
{bq}×{ b2, uq}

A3 {Mr12} ×{ Mr21, Lar1, Uar1, Lbr2*, Uar2*}
{Mr21} ×{ Lbr2, Uar2, Ubr2}
{Mq12} ×{ Mq21, Laq1, Uaq1, Ubq1, Ubq2*}
{Mq21} ×{ Lbq2, Ubq2, Laq1*, Ubq1*}
{Lar1} ×{ Uar1, Uaq1, Laq1, Uar2, Ubr2, Lbr2, Mr21*}
{Lbr2} ×{ Ubr2, Ubq2, Lbq2, Uar1, Uar2, Ubq1*}
{Laq1} ×{ Uar1, Uaq1, Ubq1, Ubq2, Lbq2, Uar2*}
{Lbq2} ×{ Ubr2, Ubq2, Uaq1, Ubq1, Mq12*}
{Uaq1} ×{ Uar1, Uar2, Ubq1, Ubq2, Mq21}*
{Ubr2} ×{ Uar1, Uar2, Ubq1, Ubq2, Mr12}*
{Uar1} ×{ Uar2, Mr21*}
{Ubq1} ×{ Ubq2}

P3 {a2}×{ ar, a1, r1, aq, br}
{b1}×{ bq, b2, q2, aq, br}
{ar}×{ ur, a1, aq, br}
{bq}×{ uq, b2, aq, br}
{aq}×{ a1, uq}
{br}×{ b2, ur}
{r1}×{ r2}
{q1}×{ q2}
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Proof Every proposition p in a level Pi is supported by at least its no-op
action αp. Two no-op actions are necessarily independent. If p and q in
Pi−1 are such that (p, q) /∈ µPi−1 then (αp,αq) /∈ µAi. Hence, a non-mutex
pair of propositions remains non-mutex in the following level. Similarly, if
(a, b) /∈ µAi−1 then a and b are independent and their preconditions in Pi−1

are not mutex; both properties remain valid at the following level. !

According to this result, propositions and actions in a planning graph
monotonically increase from one level to the next, while mutex pairs mono-
tonically decrease. These monotonicity properties are essential to the com-
plexity and termination of the planning graph techniques.

Proposition 6.10 A set g of propositions is reachable from s0 only if there
is in the corresponding planning graph a proposition layer Pi such that g ∈ Pi

and no pair of propositions in g are in µPi.

6.3 The Graphplan Planner

The Graphplan algorithm performs a procedure close to iterative deepening,
discovering a new part of the search space at each iteration. It iteratively
expands the planning graph by one level, then it searches backward from the
last level of this graph for a solution. The first expansion, however, proceeds
to a level Pi in which all of the goal propositions are included and no pair
of them are mutex, since it does not make sense to start searching a graph
that does not meet the necessary condition of Proposition 6.10.

The iterative loop of graph expansion and search is pursued until either
a plan is found or a failure termination condition is met. Let us detail the
algorithm and its properties.

6.3.1 Expanding the Planning Graph

Let (O, s0, g) be a planning problem in the classical representation such
that s0 and g are sets of propositions and operators in O have no negated
literals in their preconditions. Let A be the union of all ground instances
of operators in O and of all no-op actions αp for every proposition p of that
problem; the no-op action for p is defined as precond(αp) = effects+(αp) =
{p}, and effects– = ∅. A planning graph for that problem expanded up to
level i is a sequence of layers of nodes and of mutex pairs

G = 〈P0, A1, µA1, P1, µP1, . . . , Ai, µAi, Pi, µPi〉.



132 Part II, Chapter 6

This planning graph does not depend on g; it can be used for different
planning problems that have the same set of planning operators O and
initial state s0.

Starting initially from P0 ← s0, the expansion of G from level i − 1
to level i is given by the Expand procedure (figure 6.5). The steps of this
procedure correspond respectively to generating the sets Ai, Pi, µAi, and µPi

from the elements in the previous level i− 1.

Expand(〈P0, A1, µA1, P1, µP1, . . . , Ai−1, µAi−1, Pi−1, µPi−1〉)
Ai ← {a ∈ A|precond(a) ⊆ Pi−1 and precond2(a) ∩ µPi−1 = ∅}
Pi ← {p | ∃a ∈ Ai : p ∈ effects+(a)}
µAi ← {(a, b) ∈ A2

i , a += b | effects–(a)∩ [precond(b)∪ effects+(b)] += ∅
or effects–(b) ∩ [precond(a) ∪ effects+(a)] += ∅
or ∃(p, q) ∈ µPi−1 : p ∈ precond(a), q ∈ precond(b)}

µPi ← {(p, q) ∈ P 2
i , p += q | ∀a, b ∈ Ai, a += b :

p ∈ effects+(a), q ∈ effects+(b) ⇒ (a, b) ∈ µAi}
for each a ∈ Ai do: link a with precondition arcs to precond(a) in Pi−1

positive arcs to effects+(a) and negative arcs to effects–(a) in Pi

return(〈P0, A1, µA1, . . . , Pi−1, µPi−1, Ai, µAi, Pi, µPi〉)
end

Figure 6.5: Expansion of a Planning graph

Let us analyze some properties of a planning graph.

Proposition 6.11 The size of a planning graph down to level k and the
time required to expand it to that level are polynomial in the size of the
planning problem.

Proof If the planning problem (O, s0, g) has a total of n propositions and
m actions, then ∀i : |Pi| ≤ n, and |Ai| ≤ m + n (including no-op actions),
and |µAi| ≤ (m + n)2, and |µPi| ≤ n2. The steps involved in the generation
of these sets are of polynomial complexity in the size of the sets.

Furthermore, n and m are polynomial in the size the problem (O, s0, g).
This is the case since, according to our assumption A0, operators cannot
create new constant symbols. Hence, if c is the number of constant symbols
given in the problem, e=maxo∈O{| effects+(o)|}, and α is an upper bound
on the number of parameters of any operator, then m ≤ |O| × cα, and
n ≤ |s0| + e× |O|× cα. !
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Moreover, the number of distinct levels in a planning graph is bounded:
at some stage, the graph reaches a fixed-point level, as defined bellow.

Definition 6.12 A fixed-point level in a planning graph G is a level κ such
that for ∀i, i > κ, level i of G is identical to level κ, that is Pi = Pκ,
µPi = µPκ, Ai = Aκ and µAi = µAκ. !

Proposition 6.13 Every planning graph G has a fixed-point level κ which
is the smallest k such that |Pk−1| = |Pk| and |µPk−1| = |µPk|.

Proof To show that the planning graph has a fixed-point level, notice that
(i) there is a finite number of propositions in a planning problem, (ii) ∀i,
Pi−1 ⊆ Pi, and (iii) if a pair (p, q) /∈ µPi−1 then (p, q) /∈ µPi. Hence, a
proposition level Pi either has more propositions than Pi−1 or it has fewer
mutex pairs. Since these monotonic differences are bounded, at some point
Pi−1 = Pi, µPi−1 = µPi. Hence Ai+1 = Ai and µAi+1 = µAi.

Now, suppose that |Pk−1| = |Pk| and |µPk−1| = |µPk|; let us show that
all levels starting at k are identical:

• Since (|Pk−1| = |Pk|) and ∀i, Pi−1 ⊆ Pi it follows that (Pk−1 = Pk).
• Since (Pk−1 = Pk) and (|µPk−1| = |µPk|), µPk−1 = µPk. This is the case

since a non-mutex pair of propositions at k−1 remains non-mutex at level
k (Proposition 6.9).

• Ak+1 depends only on Pk and µPk. Thus (Pk−1 = Pk) and (µPk−1 = µPk)
implies Ak+1 = Ak, and consequently Pk+1 = Pk. The two sets Ak+1 and
Ak have the same dependency constraints (that are intrinsic to actions)
and the same mutex between their preconditions (since µPk−1 = µPk),
thus µAk+1 = µAk. Consequently µPk+1 = µPk.

Level k +1 being identical to level k, the same level will repeat for all i such
that i > k. !

6.3.2 Searching the Planning Graph

The search for a solution plan in a planning graph proceeds back from a
level Pi that includes all goal propositions, no pair of which being mutex,
that is, g ∈ Pi and g2 ∩ µPi = ∅. The search procedure looks for a set
πi ∈ Ai of non-mutex actions that achieve these propositions. Preconditions
of elements of πi become the new goal for level i − 1 and so on. A failure
to meet the goal of some level j leads to a backtrack over other subsets of
Aj+1. If level 0 is successfully reached, then the corresponding sequence
〈π1, . . . ,πi〉 is a solution plan.
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Figure 6.6: A solution plan

Example 6.14 The goal g = {a2, b1} of the previous example is in P3

without mutex (see figure 6.6 where goal propositions and selected actions
are shown in bold). The only actions in A3 achieving g are respectively Uar2
and Uqb1. They are non-mutex, hence π3 = {Uar2, Ubq1}.

At level 2, the preconditions of the actions in π3 become the new goal:
{r2, ar, q1, bq}. r2 is achieved by αr2 or by Mr12 in A2; ar by αar or by
Lar1. Out of the 4 combinations of these actions, 3 are mutex pairs: (Mr21,
Lar1), (αr2 , Lar1) and (αr2 , αar), the last two are mutex because they
require mutex preconditions (r1, r2) and (r2, ar) in P1. Similarly for the 2
couples of actions achieving q1 and bq: (Mq21, Lbq2), (αq1 , Lbq2) and (αq1 ,
αbq) are mutex pairs. Hence the only possibility in A2 for achieving this
subgoal is the subset π2={Mr12, αar , Mq21, αbq}.

At level 1, the new goal is {r1, ar, q2, bq}. Its propositions are achieved
respectively by αr1 , Lar1, αq2 , Lbq2.

Level 0 is successfully reached.
The solution plan is thus the sequence of subsets, without no-op actions:

Π = 〈{Lar1, Lbq2}, {Mr12,Mq21}, {Uar2, Ubq1}〉. !

The extraction of a plan from a planning graph corresponds to a search
in an And/Or subgraph of the planning graph:

• from a proposition in goal g, Or-branches are arcs from all actions in the
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Extract(G, g, i)
if i = 0 then return (〈〉)
if g ∈ ∇(i) then return(failure)
πi ← GP-Search(G, g, ∅, i)
if πi += failure then return(πi)
∇(i) ← ∇(i) ∪ {g}
return(failure)

end

Figure 6.7: Extraction of a plan for a goal g

preceding action level that support this proposition, i.e., positive arcs to
that proposition;

• from an action node, And-branches are its precondition arcs (shown in
fig.6.6 as connected arcs).

The mutex relation between propositions provide only forbidden pairs,
not tuples. But the search may show that a tuple of more than two propo-
sitions corresponding to an intermediate subgoal fails. Because of the back-
tracking and iterative deepening, the search may have to analyze that same
tuple more than once. Recording the tuples that failed may save future
search. This recording is performed by procedure Extract (fig. 6.7) into a
nogood hash-table denoted ∇. This hash table is indexed by the level of the
failed goal, since a goal g may fail at level i and succeed at j > i.

Extract takes as input a planning graph G, a current set of goal propo-
sitions g and a level i. It extracts a set of actions πi ⊆ Ai that achieves
propositions of g by recursively calling the GP-Search procedure (fig. 6.8).
If it succeeds in reaching level 0 then it returns an empty sequence, from
which pending recursions returns successfully a solution plan. It records
failed tuples into the ∇ table and it checks each current goal with respect
to recorded tuples. Note that a tuple g is added to the nogood table at a
level i only if the call to GP-search fails at establishing g at this level from
mutex and other nogoods found or established at the previous level.

The GP-Search procedure selects each goal proposition p at a time, in
some heuristic order. Among the resolvers of p, i.e., actions that achieve p
and that are not mutex with already selected actions for that level, it non-
deterministically chooses one action a which tentatively extends the current
subset πi through a recursive call at the same level. This is performed on a
subset of goals reduced by p and by any other positive effect of a in g. As
usual, a failure for this non-deterministic choice is a backtrack point over
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GP-Search(G, g,πi, i)
if g = ∅ then do

Π ← Extract(G,
⋃
{precond(a) | ∀a ∈ πi}, i− 1)

if Π = failure then return(failure)
return(Π.〈πi〉)

else do
select any p ∈ g
resolvers ← {a ∈ Ai | p ∈ effects+(a) and ∀b ∈ πi : (a, b) /∈ µAi}
if resolvers = ∅ then return(failure)
nondeterministically choose a ∈ resolvers
return(GP-Search(G, g − effects+(a),πi ∪ {a}, i))

end

Figure 6.8: Search for actions πi ∈ Ai that achieve goal g

other alternatives for achieving p, if any, or a backtracking further up if all
resolvers of p have been tried out. When g is empty then πi is complete;
the search recursively tries to extract a solution for the following level i− 1.

One may view the GP-Search procedure as a kind of CSP solver.4 Here
CSP variables are goal propositions, their values are possible actions achiev-
ing them. The procedure chooses a value for a variable compatible with
previous choices (non-mutex), and recursively tries to solve other pending
variables. This view can be very beneficial if one applies to procedure GP-
Search the CSP heuristics, e.g., for the ordering of variables and for the
choice of values, and techniques such as intelligent backtracking or forward
propagation. The latter is easily added to the procedure: before recursion, a
potential value a for achieving p is propagated forward on resolvers of pend-
ing variables in g; a is removed from consideration if it leads to an empty
resolver for some pending goal proposition.

We are now ready to specify the Graphplan algorithm (fig. 6.9) with the
graph expansion and search steps, and the termination condition. Graphplan
performs an initial graph expansion until either it reaches a level containing
all goal propositions without mutex, or until it arrives at a fixed-point in
G. If the latter happens first, then the goal is not achievable. Otherwise a
search for a solution is performed. If no solution is found at this stage, the
algorithm iteratively expands, then searches the graph G.

This iterative deepening is pursued even after a fixed-point has been
reached, until success or until the termination condition is satisfied. This

4This view will be further detailed in Chapter 8
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Graphplan(A, s0, g)
i ← 0, ∇ ← ∅ , P0 ← s0

G ← 〈P0〉
until [g ⊆ Pi and g2 ∩ µPi = ∅] or Fixedpoint(G) do

i ← i + 1
G ← Expand(G)

if g +⊆ Pi or g2 ∩ µPi += ∅ then return(failure)
Π ← Extract(G, g, i)
if Fixedpoint(G) then η ← |∇(κ)|
else η ← 0
while Π = failure do

i ← i + 1
G ← Expand(G)
Π ← Extract(G, g, i)
if Π= failure and Fixedpoint(G) then

if η = |∇(κ)| then return(failure)
η ← |∇(κ)|

return(Π)
end

Figure 6.9: The Graphplan Algorithm

termination condition requires that the number of nogood tuples in ∇(κ) at
the fixed-point level κ, stabilizes after two successive failures.

In addition to Expand and Extract, the Graphplan algorithm calls the pro-
cedure Fixedpoint(G) that checks the fixed-point condition; this procedure
sets κ to the fixed-point level of the planning graph when the fixed-point is
reached.

6.3.3 Analysis of Graphplan

In order to prove the soundness, completeness and termination of Graphplan,
let us first analyze how the nogood table evolves along successive deepening
stages of G. Let ∇j(i) be the set of nogood tuples found at level i after the
unsuccessful completion of a deepening stage down to a level j > i. The
failure of stage j means that any plan of j or less steps must make at least
one the goal tuples in ∇j(i) true at a level i, and that none of these tuples
is achievable in i levels.

Proposition 6.15 ∀i, j such that j > i, ∇j(i) ⊆ ∇j+1(i)
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Proof A tuple of goal propositions g is added as a nogood in ∇j(i) only
when Graphplan has performed an exhaustive search for all ways of achieving
g with the actions in Ai and it fails: each subset of actions in Ai providing
g is either mutex or it involves a tuple of preconditions g′ that was shown to
be a nogood at the previous level ∇k(i− 1), for i < k ≤ j. In other words,
only the levels from 0 to i in G are responsible for the failure of the tuple g
at level i. By iterative deepening, the algorithm may find that g is solvable
at some later level i′ > i, but regardless of how many iterative deepening
stages are performed, once g is in ∇j(i) it remains in ∇j+1(i) and in the
nogood table at the level i in all subsequent deepening stages. !

Proposition 6.16 The Graphplan algorithm is sound, complete, and it ter-
minates: it returns failure iff the planning problem (O, s0, g) has no solution,
otherwise it returns a sequence of sets of actions Π that is a solution plan
to the problem.

Proof To show the soundness of the algorithm, assume that Graphplan
returns the sequence Π = 〈π1, . . . ,πn〉. The set resolvers, as defined in
GP-Search, is such that every set of actions πi ∈ Π is independent. Further-
more, the set of actions πn achieves the set of problem goals, πn−1 achieves
precond(πn), etc. Finally, when GP-Search calls Extract on the recursion
i = 1, we are sure that all precond(π1) are in P0. Hence the layered plan Π
meets Definition 6.5 of a solution plan to the problem.

Suppose that instead of finding a solution, the algorithm stops on one of
the two failure termination conditions, that is either

• the fixed point κ is reached before attaining a level i that contains all goal
propositions, no pair of which being mutex, or

• there are two successive deepening stages such that |∇j−1(κ)| = |∇j(κ)|.

In the former case G does not have a level that meets the necessary condition
of Proposition 6.10, hence the problem is unsolvable.
In the latter case:

• ∇j−1(κ) = ∇j(κ); this is because of Proposition 6.15, and
• ∇j−1(κ) = ∇j(κ + 1); this is because the last i − κ levels are identical,

that is, ∇j−1(κ) is to stage j − 1 what ∇j(κ + 1) is to stage j.

These two equations entails ∇j(κ) = ∇j(κ + 1): all unsolvable goal tuples
at the fixed point level (including the original goals of the problem) are also
unsolvable at the next level κ + 1. Hence the problem is unsolvable.
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Finally, we have to show that Graphplan necessarily stops when the plan-
ning problem is unsolvable. Because of Proposition 6.15, the number of
nogood goal tuples at any level grows monotonically, and there is a finite
maximum number of goal tuples. Hence, there is necessarily a point where
the second failure termination condition is reached, if the first failure con-
dition did not apply before. !

To end this section, let us underline two main features of Graphplan:

• The mutex relation on incompatible pairs of actions and propositions,
and the weak reachability condition of Proposition 6.10, offer a very good
insight about the interaction between the goals of a problem, and about
which goals are possibly achievable at some level.

• Because of the monotonic properties of the planning graph, the algorithm
is guaranteed to terminate; the fixed-point feature together with the reach-
ability condition provide an efficient failure termination condition, in par-
ticular when the goal propositions without mutex are not reachable no
search at all is performed.

Because of these features and of its backward constraint directed search,
Graphplan brought a significant speed-up and contributed to the scalability
of planning. Evidently, Graphplan does not change the intrinsic complexity
of planning, which is pspace-complete in the set theoretic representation.
Since we showed that the expansion of the planning graph is performed in
polynomial time (Proposition 6.11), this means that the costly part of the
algorithm is in the search of the planning graph. Furthermore, the memory
requirement of the planning graph data structure can be a significant limit-
ing factor. Several techniques and heuristics have been devised to speed-up
the search and to improve the memory management of its data structure.
They will be introduced in the next section.

6.4 Extensions and Improvements of Graphplan

6.4.1 Extending the Language

The planning algorithm described in the previous section takes as input
a problem (O, s0, g) which is stated in a restricted classical representation
where s0 and g are sets of propositions and operators in O have no negated
literals in their preconditions. For a realistic problem, a more expressive
language is desirable. Let us illustrate here how some of the extensions
of the classical representation described in Section 2.4 can be taken into
account in Graphplan.
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Handling negation in the preconditions of operators and in goals is easily
performed by introducing a new predicate not-p to replace the negation of
a predicate p in preconditions or goals (see Section 2.6). This replacement
requires

• adding not-p in effects– when p is in effects+ of an operator o, and
• adding not-p in effects+ when p is in effects– of o

One has also to extend s0 with respect to the newly introduced not-p pred-
icates is order to maintain a consistent and closed5 initial world.

Example 6.17 The DWR domain has the following operator:

move(r, l,m) ;; robot r moves from location l to location m
precond: adjacent(l, m), at(r, l),¬ occupied(m)
effects: at(r, m), occupied(m),¬ occupied(l),¬ at(r, l)

The negation in the precondition is handled by introducing the predicate
not-occupied in the following way:

move(r, l,m) ;; robot r moves from location l to location m
precond: adjacent(l, m), at(r, l), not-occupied(m)
effects: at(r, m), occupied(m),¬ occupied(l),¬ at(r, l),

not-occupied(l),¬not-occupied(m)

Furthermore, if a problem has three locations l1, l2, l3, such that only l1
is initially occupied, we need to add to the initial state the propositions:
not-occupied(l2), not-occupied(l3). !

This approach, which rewrites a planning problem into the restricted
representation required by Graphplan, can also be used for handling the
other extensions discussed in Section 2.4. For example, recall that an opera-
tor with a conditional effect can be expanded into an equivalent set of pairs
(precondi, effectsi). Hence it is easy to rewrite it as several operators, one
for each such a pair. Quantified conditional effects are similarly expanded.
However, such an expansion may lead to an exponential number of oper-
ators. It is preferable to generalize the algorithm for handling directly an
extended language.

Generalizing Graphplan for handling directly operators with disjunctive
preconditions is easily done by considering the edges from an action in Ai

to its preconditions in Pi−1 as being a disjunctive set of And-connectors,
5that is, any proposition that is not explicitly stated is false
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as in And-Or graphs. The definition of mutex between actions needs to be
generalized with respect to these connectors. The set of resolvers in GP-
search among which a nondeterministic choice is made for achieving a goal,
has now to take into account not the actions, but their And-connectors (see
Exercise 6.12).

Handling directly operators with conditional effects requires more sig-
nificant modifications. One has to start with a generalized definition of
dependency between actions taking into account their conditional effects.
This is needed in order to keep the desirable result of Proposition 6.4, i.e.,
that an independent set of actions defines the same state transitions for
any permutation of the set. One has also to define a new structure of the
planning graph for handling the conditional effects, e.g., for propagating a
desired goal at level Pi which is a conditional effect, over to its antecedent
condition, either in a positive or in a negative way. One has also to come up
with ways for computing and propagating mutex relations, and with a gen-
eralization of the search procedure in this new planning graph. For example,
the planner called IPP labels an edge from an action to a proposition by
the conditions under which this proposition is an effect of the action. These
labels are taken into account for the graph expansion and search. However,
they are not exploited for finding all possible mutex, hence leaving a heavier
load on the search.

6.4.2 Improving the Planner

Memory management. The planning graph data structure makes ex-
plicit all the ground atoms and instantiated actions of a problem. It has to
be implemented carefully in order to maintain a reasonable memory demand
that is not a limiting factor to the planner’s performance.

The monotonic properties of the planning graph are essential to this
purpose. Since Pi−1 ⊆ Pi, and Ai−1 ⊆ Ai, one does not need to keep these
sets explicitly, but only to record for each proposition p the level i at which
p appeared for the first time in the graph, and similarly for each action.

Because of Proposition 6.9, a symmetrical technique can be used for the
mutex relations, that is, to record the level at which a mutex disappeared for
the first time. Furthermore, there is no need to record the planning graph
after it’s fixed point level κ. One has just to maintain the only changes that
can appear after this level, i.e., in the nogood table of non-achievable tuples.
Here also the monotonic property of Proposition 6.15, i.e., ∇j(i) ⊆ ∇j+1(i),
allows an incremental management.

Finally, several general programming techniques can also be useful for
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the memory management. For example, the bitvector data structure allows
to encode a state and a proposition level Pi as a vector of n bits, where n
is the number of propositions in the problem; an action is encoded as four
such vectors for its positive and negative preconditions and effects.

Focusing and improving the search. The description of a domain in-
volves rigid predicates that do not vary from state to state. In the DWR
domain for example, the predicates adjacent, attached and belong are rigid:
there is no operator that changes their truth value. Once operators are
instantiated into ground actions for a given problem, one may remove the
rigid predicates from preconditions and effects because they play no further
role in the planning process. This simplification reduces the number of ac-
tions. For example, there will be no action load(crane3,loc1,cont2,rob1) if
belong(crane3,loc1) is false, i.e., if crane3 is not in location loc1. Because of
this removal, one may also have flexible predicates that become invariant
for a given problem, triggering more removals. There can be a great benefit
in preprocessing a planning problem in order to focus the processing and
the search on the sole relevant facts and actions. This preprocessing can be
quite sophisticated and may allow to infer non obvious object types, sym-
metries and invariant properties, such as permanent mutex relations, hence
simplifying the mutex computation. It may even find mutex propositions
that cannot be detected by Graphplan because of the binary propagation.

Nogood tuples, as well as mutex, play an essential role in pruning the
search. However, if we are searching to achieve a set of goals g in a level
i, and if there g′ ∈ ∇i such that g′ ⊂ g, we will not detect that g is not
achievable and prune the search. The Extract procedure can be extended to
test this type of set inclusion, but this may involve a significant overhead.
It turns out however that the termination condition of the algorithm, i.e.,
|∇j−1(κ)| = |∇j(κ)|, holds even if the procedure records and keeps in∇i only
nogood tuples g such that no subset of g has been proven to be a nogood.
With this modification the set inclusion test can be efficiently implemented.

In addition to pruning, the GP-search procedure has to be focused with
heuristics for selecting the next proposition p in the current set g and for
nondeterministically choosing the action in resolvers. A general heuristics
consists in selecting first a proposition p which leads to the smallest set of
resolvers, i.e., the proposition p achieved by the smallest number of actions.
For example, if p is achieved by just one action, then p does not involve a
backtrack point and is better processed as early as possible in the search tree.
A symmetrical heuristics for the choice of an action supporting p is to prefer
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no-op first. Other heuristics that are more specific to the planning graph
structure and more informed take into account the level at which actions and
propositions appear for the first time in the graph. The later a proposition
appears in the planning graph, the most constrained it is. Hence, one would
select the latest propositions first. A symmetrical reasoning leads to choose
for achieving p the action that appears the earliest in the graph.6

There are finally a number of algorithmic techniques that allow to im-
prove the efficiency of the search. One of them is for example the forward-
checking technique: before choosing an action a in resolvers for handling
p, one checks that this choice will not leave another pending proposition in
g with an empty set of resolvers. Forward-checking is a general algorithm
for solving constraint satisfaction problems. It turns out that several other
CSP techniques are applicable to the search in a planning graph, which is a
particular CSP problem.7

6.4.3 Extending the Independence Relation

We introduced the concept of layered plans with a very strong requirement
of independent actions in each set πi. In practice, we do not necessarily need
to have every permutation of each set as a valid sequence of actions. We
only need to ensure that there exist at least one such permutation. This is
the purpose of the relation between actions, called the allowance relation,
which is less constrained than the independence relation while keeping the
advantages of the planning graph.

An action a allows an action b when b can be applied after a and the
resulting state contains the union of the positive effects of a and b. This is
the case when a does not delete a precondition of b and b does not delete a
positive effect of a:

a allows b iff effects–(a) ∩ precond(b) = ∅ and effects–(b) ∩ effects+(a) = ∅

Allowance is weaker than independence. Independence implies allowance:
if a and b are independent then a allows b and b allows a. Note that when a
allows b but b does not allow a then a has to be ordered before b. Note also
that allowance is not a symmetrical relation.

If we replace the independence relation with the allowance relation in
Definition 6.7 we can say that two actions a and b are mutex either:

6This topic will be further developed in Chapter 9 devoted to heuristics.
7This point is developed in Section 8.6.2 of the CSP chapter.
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• when they have mutually exclusive preconditions, or
• when a does not allow b and b does not allow a.

This definition leads to fewer mutex pairs between actions, and consequently
to fewer mutex between propositions. On the same planning problem, the
planning graph will have fewer or at most the same number of levels, before
reaching a goal or a fixed point, than with the independence relation.

Figure 6.10: Planning graphs for independence (i) and allowance (ii) rela-
tions.

Example 6.18 Let us illustrate the difference entailed by the two relations
on a simple planning domain that has three actions a, b and c and four
propositions p, q, r, and s:

• precond(a) = {p}; effects+(a) = {q}; effects–(a) = {}
• precond(b) = {p}; effects+(b) = {r}; effects–(b) = {p}
• precond(c) = {q, r}; effects+(c) = {s}; effects–(c) = {}

Actions a and b are not independent (b deletes a precondition of a), hence
they will be mutex in any level of the planning graph built with indepen-
dence relation. However, a allows b: these actions will not be mutex with
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the allowance relation. The two graphs are illustrated in Figure 6.10 for a
problem whose initial state is {p} and goal is {s} (solution plans are shown
in bold). In the graph (i) with the independence relation, preconditions of
c are mutex in P1; because of the no-op αq they become non-mutex in P2;
action c appears in A2 giving the goal in P3. In the graph (ii) with the
allowance relation, q and r are non-mutex in P1, the goal is reached one
level earlier. !

The benefit of the allowance relation, that is fewer mutex pairs and
a smaller fixed point level, has a cost. Since the allowance relation is not
symmetrical, a set of pairwise non-mutex actions does not necessarily contain
a “valid” permutation. For example, if action a allows b, b allows c and c
allows a but none of the opposite relations holds, then the three actions a, b
and c can be non-mutex (pending non-mutex preconditions) but there is
no permutation that gives an applicable sequence of actions and a resulting
state corresponding to the union of their positive effects. While earlier a set
of non-mutex actions was necessarily independent and could be selected in
the search phase for a plan, here we have to add a further requirement for
the allowance relation within a set.

A permutation 〈a1, . . . , ak〉 of the elements of a set πi is allowed if every
action allows all its followers in the permutation, i.e., ∀j, k : if j < k then
aj allows ak. A set is allowed if it has at least one allowed permutation.

The state resulting from the application of an allowed set can be de-
fined as in the previous section: γ(s,πi)=(s−effects–(πi))∪effects+(πi). All
propositions of section 6.3.3 can be rephrased for an allowed set and for a
layered plan whose levels are allowed sets by just replacing “any permuta-
tion” with “any allowed permutation” (see Exercise 6.14).

In order to compute γ(s,πi) and to use such a set in the GP-Search
procedure, one does not need to produce an allowed permutation and to
commit the plan to it, one just need to check its existence. We already
noticed that an ordering constraint “a before b” would be required whenever
a allows b but b does not allow a. It is easy to prove that a set is allowed
if and only if the relation consisting of all pairs (a, b) such that “b does
not allow a” is cycle free. This can be checked with a topological sorting
algorithm in complexity that is linear in the number of actions and allowance
pairs. Such a test has to take place in the GP-Search procedure right before
recursion on the following level:
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GP-Search(G, g,πi, i)
if g = ∅ then do

if πi is not allowed then return(failure)
Π ← Extract(G,

⋃
{precond(a) | ∀a ∈ πi}, i− 1)

. . . etc (as in figure 6.8)

It is easy to show that with the above modification and the modification
in Expand for the definition of allowance in µAi, the Graphplan algorithm
keeps the same properties of soundness, completeness and termination. The
allowance relation leads to fewer mutex pairs, hence to more actions in a level
and to fewer levels in the planning graph. The reduced search space pays
off in the performance of the algorithm. The benefit can be very significant
for highly constrained problems where the search phase is very expensive.

6.5 Discussion and Historical Remarks

The Graphplan planner attracted considerable attention from the research
community. The original papers on this planner [70, 71] are among the most
cited references in AI planning. One reason for that was the spectacular im-
provement in planning performance introduced by Graphplan in comparison
with the earlier plan-space planners. The other and probably more impor-
tant reason is the richness of the planning-graph structure, which opened
the way to a broad avenue of research and extensions. At some point, a sig-
nificant ratio of the papers in every planning conference was concerned with
the planning graph techniques. For several years, a significant fraction of
the papers in every planning conference was concerned with planning-graph
techniques. A complete discussion of these papers is beyond the scope of
this section. Let us discuss a few illustrative contributions.

The analysis of the planning graph as a reachability structure is due
to [296] who introduced three approximations of the reachability tree (the
“unioned plangraph”, where every level is the union states in the corre-
sponding level of the reachability tree, the “naive plangraph” that does not
take into account mutex in action levels, and the planning graph), and who
also proposed a backward construction of the planning graph starting from
the goal. This paper relied on previous work, e.g. [297], to analyze Graph-
plan as a disjunctive refinement planner, and to propose CSP techniques for
improving it [151]. Some CSP techniques, such as forward checking, were
already in the initial Graphplan article [71]. But other contributions, e.g.,
[290, 291] elaborated further by showing that a planning graph is a dynamic
CSP, and by developing intelligent backtracking and efficient recording and
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management of failure tuples.

The proposal for translating a planning problem from an extended classi-
cal representation into Graphplan restricted language is due to [204]. Several
contributions for handling directly and efficiently extended constructs, like
conditional effects, have been proposed, e.g., [322, 18]. A significant part of
this work on the language extension took part along with the development
of two graphplan successors, the IPP[321] and STAN [356] planners. Many
improvements to the encoding, memory management and algorithms for the
planning graph techniques are due to these two planners. Several domain
analysis techniques to focus the graph and the search, such as [408, 557],
have been extensively developed in a system called the Type Inference Mod-
ule [183] and integrated to STAN [184].

Several articles on the planning graph techniques insisted on plans with
parallel actions as an important contribution of Graphplan. We carefully
avoided mentioning parallelism is this chapter, since there is no semantics
of concurrency in layered plans.8 This is clearly illustrated in the extension
from the independence to the allowance relations, or from the requirement
to have all permutations of actions in a layer πi equivalent to the weaker
requirement that there is at least one permutation that achieves the effects
of πi from its preconditions. This extension from independence to allowance
is due to [108] for a planner called LCGP.

The work on LCGP led also to contributions on level-based heuristics for
Graphplan [107]. Similar heuristics were independently proposed by [295].
More elaborated heuristics relying on local search techniques were proposed
in the LPG planner [211] and led to significant performances, as illustrated
in AIPS’02 planning competition results [186]. A related issue that arose
at that time (and to which we will come back in the Chapter 9) is the use
of Graphplan not as a planner but as a technique to derive heuristics for
state-based planners [411, 413, 263].

The relationship between two techniques that were developed in parallel,
the planning graph and the SAT-based techniques (see next chapter) have
been analyzed by several authors, among which [307, 39]

Many other extensions to Graphplan have been studied such as, for ex-
ample, the planning graph techniques for handling resources [320], and for
dealing with uncertainty [535, 69] or partial specification of the domain [477].

8See Chapter 14, and particularly Section 14.2.5 that is devoted to concurrent actions
with interfering effects
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6.6 Exercises

6.1 Suppose we run Graphplan on the painting problem described in Exer-
cise 5.6.

(a) How many actions does it generate at level 1 of the planning graph?
How many of these are maintenance actions?

(b) Expand the planning graph out to two levels, and draw the result.

(c) What is the first level at which Graphplan calls Extract?

(d) At what level will GraphPlan find a solution? What solution will it
find?

(e) If we kept generating the graph out to infinity rather than stopping
when Graphplan finds a solution, what is the first level of the graph at
which the number of actions would reach its maximum?

6.2 Redo Exercise 6.1 on the washing problem described in Exercise 5.7.

6.3 How many times will Graphplan need to do graph expansion if we run
it on the Sussman anomaly (see Example 4.5)?

6.4 Let P = (O, s0, g) and P ′ = (O, s0, g′) be the statements of two solvable
planning problems such that g ⊆ g′. Suppose we run Graphplan on both
problems, generating planning graphs G and G′. Is G ⊆ G′?

6.5 Prove Proposition 6.6 about the result of a set of independent actions.

6.6 Prove Proposition 6.10 about the necessary condition for reaching a
goal in a planning graph.

6.7 Show that the definition of Pi in the Expand procedure can be modified
to be

Pi ← [Pi−1 −
⋂

{effects–(a) | a ∈ Ai}]
⋃

{effects+(a) | a ∈ Ai)}.

Discuss how this relates to the usual formula, γ(a, s) = (s − effects–(a)) ∪
effects+(a).

6.8 Specify the Graphplan algorithm, including the procedures Expand, Ex-
tract and GP-Search, without the no-op actions. Discuss if this leads to a
benefit in the presentation and/or in the implementation of the algorithm.
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6.9 Suppose we want to modify Graphplan so that it can use the follow-
ing operators to increment and decrement a register r that contains some
amount v:

add1(r, v)
precond: contains(r, v)
effects: ¬contains(r, v), contains(r, v + 1)

sub1(r, v)
precond: contains(r, v)
effects: ¬contains(r, v), contains(r, v − 1)

We could modify Graphplan to instantiate these operators by having it
instantiate v and then compute the appropriate value for v + 1 or v − 1.

(a) What modifications will we need to make to Graphplan’s graph-expansion
subroutine, if any?

(b) Suppose we have the following initial state and goal:

s0 = {contains(r1,5), contains(r2,8)}
g = {contains(r1,8), contains(r2,7)}

How many operator instances will we have at level 1 of the planning
graph?

(c) What atoms will we have at level 2 of the planning graph?

(d) At what level of the planning graph will we start calling the solution-
extraction subroutine?

(e) What modifications will we need to make to Graphplan’s solution-
extraction subroutine, if any?

(f) Why wouldn’t it work to have the following operator to add an integer
amount w to a register r?

addto(r, v, w)
precond: contains(r, v)
effects: ¬contains(r, v), contains(v, v + w)

6.10 Apply the Graphplan algorithm to a modified version of the problem
in Example 6.1 in which there is only one robot. Explain why the problem
with two robots is simpler for Graphplan than the problem with just one
robot.
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6.11 Test the full DWR domain with several locations, a few robots and a
handful a containers on one the public-domain implementation of Graphplan
(e.g. IPP or SGP). Discuss the practical range of applicability of this planner
for the DWR domain.

6.12 Detail the modifications required for handling with Graphplan opera-
tors with disjunctive preconditions, in the modification of mutex and in the
planning procedures.

6.13 Apply Graphplan with the allowance relation to the same planning
problem. Compare the two planning graphs and the obtained solutions.

6.14 In Propositions 6.4 and 6.6, replace the expression “any permutation”
with “any allowed permutation” and prove these new propositions.

6.15 Discuss the structure of plans as output by Graphplan with the al-
lowance relation. Compare these plans to sequences of independent sets
of actions, to plans that are simple sequences of actions, and to partially
ordered sets of actions.


