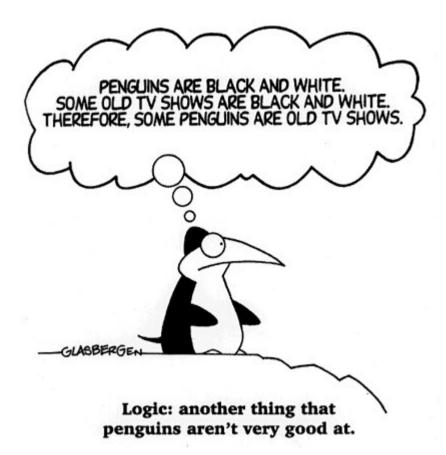
COMPSCI 367 Tutorial 3



• Machine Learning?

- Well posed learning problems
- Designing a learning system (Checkers)

Machine Learning

 Material taken from "Machine Learning" -Tom M. Mitchell. Course textbook.

&

• Carl Schultz's 367 tutorial notes from 2008.

Machine Learning

- Learn: to improve automatically with experience
- Machine Learning: programs that improve automatically with experience

e.g,

- successfully recognise spoken words
- play better checkers

 Definition: A computer program is said to learn from experience *E* with respect to some class of tasks *T* and performance measure *P*, if its performance at tasks in *T*, as measured by *P*, improves with experience *E*.

- *T*: class of tasks that we want computer program to do
- *P*: measure of performance for how well computer did
- E: some experience program has with task

- A checkers learning problem
 - T: playing checkers
 - *P*: percent of games won against opponents
 - E playing practice games against itself

- A handwriting recognition learning problem
 - *T*: recognising and classifying handwritten words within images
 - *P*: percent of words correctly classified
 - E: a database of handwritten words with given classifications

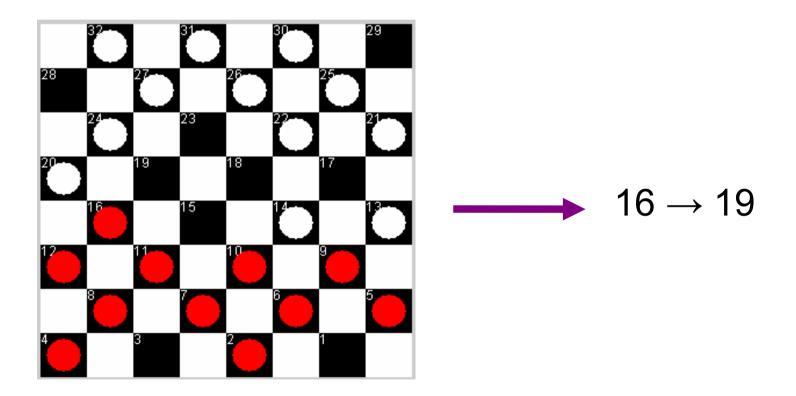
- A robot driving learning problem
 - T: driving on public motorways using vision sensors
 - *P*: average distance travelled before an error (as judged by human overseer)
 - E: a sequence of images and steering commands recorded while observing a human driver

Designing a Learning System

- Goal: Design a system to learn how to play checkers and enter it into the world checkers tournament.
 - 1) Choose the training experience
 - 2) Choose the target function
 - 3) Choose a representation for the target function
 - 4) Choose a function approximation algorithm

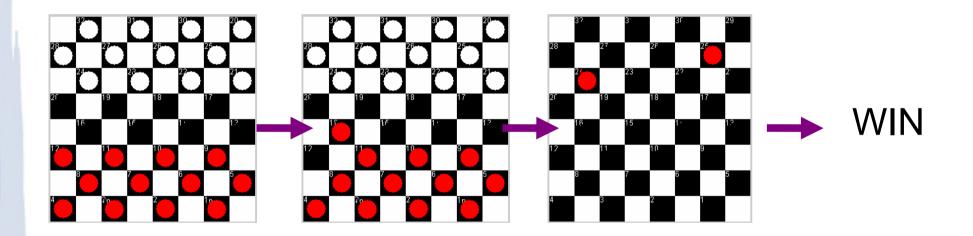
1) Choose the training experience

Direct



1) Choose the training experience

Indirect



Credit Assignment Problem!

1) Choose the training experience

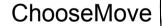
Self-play experiments

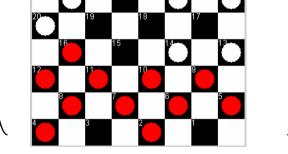
• No need for trainer.

Summary (so far)

- Decisions made
 - T: playing checkers
 - P: percent of games won in the world tournament
 - E: games played against itself
- Decisions yet to be made
 - The exact type of knowledge to be learned
 - A representation for this target knowledge
 - A learning mechanism

ChooseMove(B) $\rightarrow M$



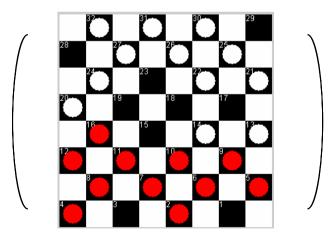


= 16 \rightarrow 19

Difficult, given our training experience

$V(b) \rightarrow R$

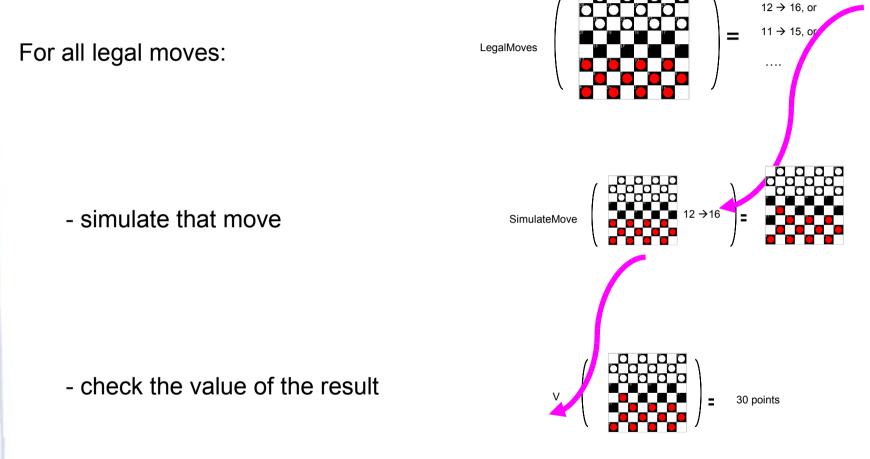
 Where V is an evaluation function that maps board, b, to some real number R.



= 30 points

Easier to learn

V



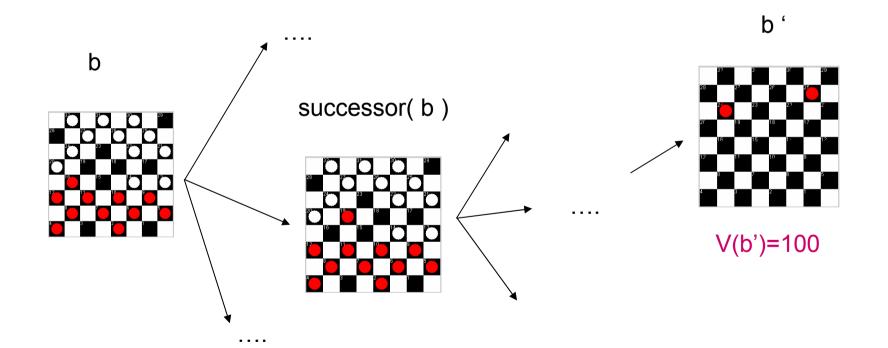
Pick the best move

What values should the target function, *V*, produce?

V(b) = 100, if b is a final board state that is won
V(b) = -100, if b is a final board state that is lost
V(b) = 0, if b is a final board state that is a draw

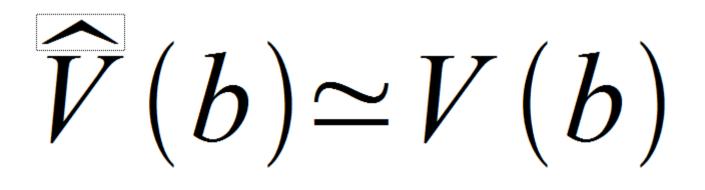
...but what about boards in the middle of a game?

 V(b) = V(b[']), if b is not a final state where b['] is the best final board state starting from b assuming both players play optimally



Not efficiently computable!

- V is too hard to learn
- Function approximation
 - Learn an approximation to ideal target function



1) big table?

input: board	score
	50
	90

2) CLIPS rules?

IF my piece is near a side edge THEN score = 80

IF my piece is near the opponents edge THEN score = 90

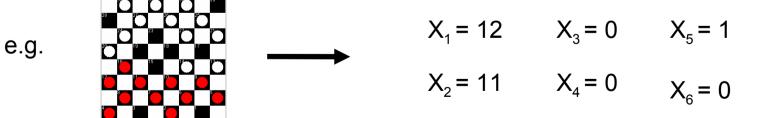
3) polynomial function? we define some variables...

- X_1 = number of white pieces on board
- X_2 = number of red pieces
- X_3 = number of white kings

 X_4 = number of red kings

 X_5 = number of white pieces threatened by red (can be captured on red's next turn)

 X_6 = number of red pieces threatened by white



Quick maths revision

- polynomial. expression with linear (+ and -) combination of terms (constants × variables) where exponent is non-negative integer (x⁴ is okay, but x^{3/4} or x⁻² not polynomial), e.g. these are polynomial expressions:
 - $\circ x_{2}^{5} + 3$
 - $\circ x^2 + 5x + 1$
 - $\circ x^{3} + 3x^{0}$
 - \circ f(x)=x³ + 2 ... is a polynomial function
 - $\circ 0 = x^3 + 2$... is a polynomial equation

degree. take a term, sum the exponents of the variables in that term

- \circ x² has degree 5
- xy has degree 2
- degree of a polynomial. is the highest degree of any of the terms polynomials with degree 1 to 5 are given special names
 - linear. has degree 1
 - quadratic. has degree 2
 - cubic. has degree 3
 - o quartic. has degree 4
 - o quintic. has degree 5
- quadratic polynomial. has degree 2, e.g.
 - $\circ x^2$
 - $0 10x + 3 + x^2$
- NB: in many cases, people say "quadratic" and mean that the highest allowable degree is 2 (not necessarily exactly 2), i.e. the degree might be less

- Weighted linear combination:

Computer program will change the values of the weights – it will *learn* what the weights should be to give correct score for each board

 $\widehat{V}(b) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + w_5 x_5 + w_6 x_6$

- Require a set of training examples
- Ordered pair: $\langle b, V_{train}(b) \rangle$
- e.g.
 - Black has won (red has no pieces left):

 $< x_1 = 3, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0, x_6 = 0 > +100 >$

- X₁ = number of white pieces on board
- X₂ = number of red pieces
- X₃ = number of white kings

 X_4 = number of red kings

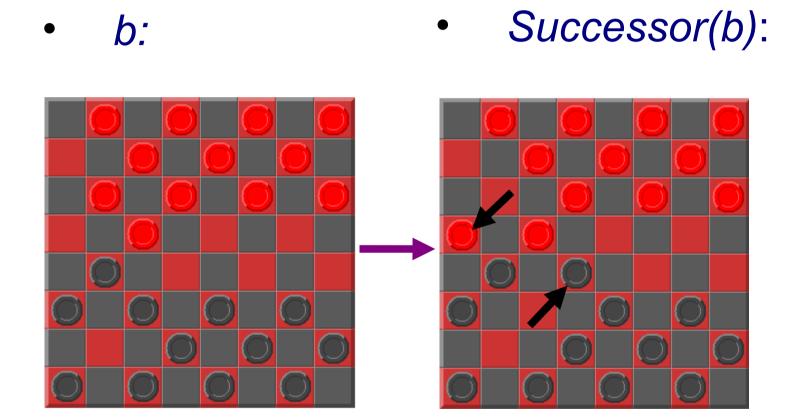
 X_5 = number of white pieces threatened by red (can be captured on red's next turn)

X₆ = number of red pieces threatened by white

What about intermediate board states?

 $V_{\textit{train}}(b) \! \leftarrow \! \widehat{V}(\textit{Successor}(b))$

Where *Successor(b)* is the next board state following *b*, which it is again the program's turn to move (i.e. the board state following the program's move and the opponents response)



- Now, we have the training data
- Need an algorithm to adjust the weights to best fit this training data.
- Common approach: best set of weights will minimise the squared error, E, between training values and value predicted by \hat{V}

$$E = \sum_{\langle b, V_{train}(b) \rangle \in training examples} (V_{train}(b) - \widehat{V}(b))^2$$

- We wish to minimise *E*, for the observed training examples

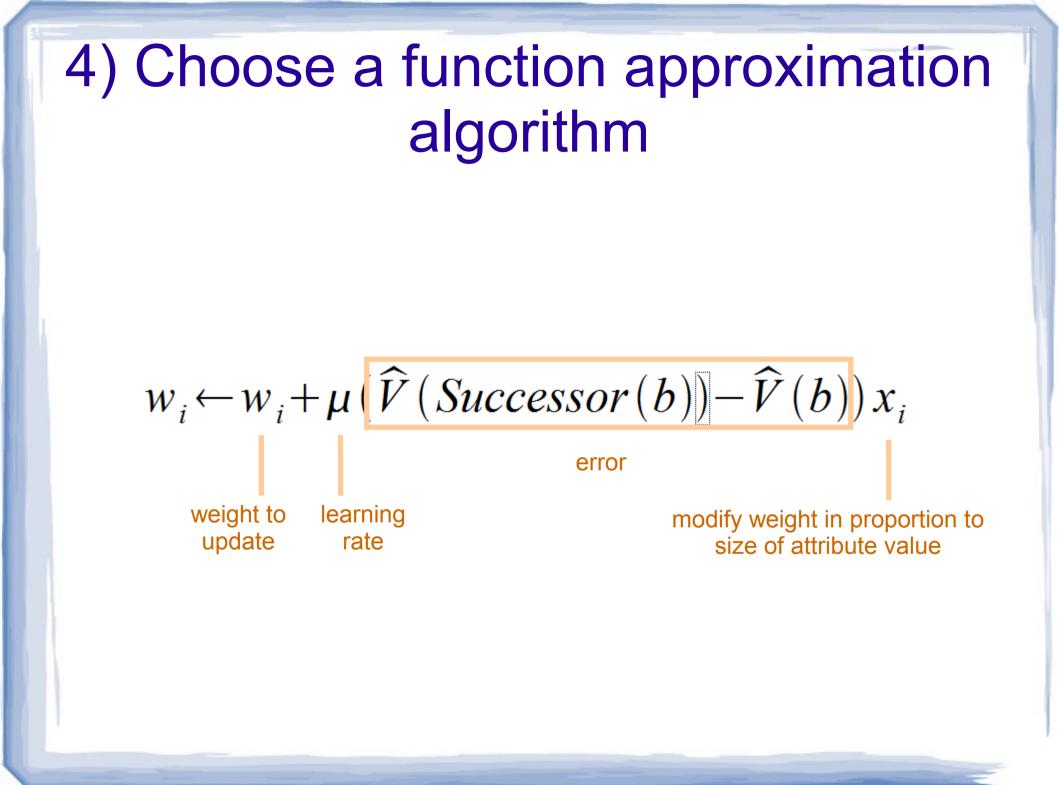
- Need algorithm that will incrementally refine weights as more training examples become available
- Needs to be robust to errors in training data
- LMS training rule: will adjust weights a small amount in the direction that reduces the error

- LMS weight update rule.
 - For each training example $\langle b, V_{train}(b) \rangle$
 - Use the current weights to calculate $\widehat{V}(b)$
 - For each weight w_i , update it as

$$w_i \leftarrow w_i + \mu(V_{train}(b) - \widehat{V}(b))x_i$$

where,

$$V_{train}(b) \leftarrow \widehat{V}(Successor(b))$$



Final Algorithm

learning process – playing and learning at same time computer will play against itself initialise \widehat{V} with random weights (w₀=23 etc.) start a new game - for each board (a) calculate \widehat{V} on all possible legal moves (b) pick the successor with the highest score (c) evaluate error

(d) modify each weight to correct error

First time round \widehat{V} is essentially random (because we set the weights as random) – as it learns \widehat{V} should pick better successors 1 million games later and our \hat{V} might now predict a useful score for any board that we might see

Final Algorithm

- $(w_0 = 25.0, w_1 = 15.5, w_2 = 19.3, ..., w_6 = 54.4)$
- $(w_0 = 82.0, w_1 = 15.3, w_2 = 9.9, ..., w_6 = 100.0)$
- $(w_0 = 67.3, w_1 = 0.5, w_2 = 3.5, ..., w_6 = 30.2)$

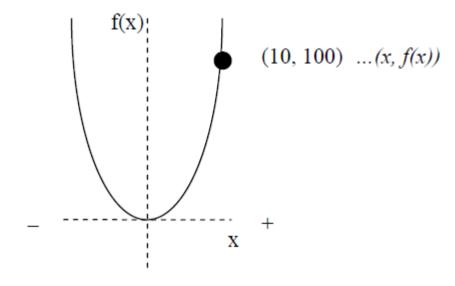
- $(w_0 = 3.23, w_1 = 1.04, w_2 = 4.55, ..., w_6 = 0.78)$
- Searching hypothesis space for best fit to observed training data.

Quick maths revision

- gradient-descent. finds the local minimum of a function does this by moving in direction *negative* of gradient at the current point
 - o **a** is current point
 - o **b** is next point
 - o f'(a) is gradient of function at point a
 - \circ η is the size of the step that we'll take (must be +ve)

 $\mathbf{b} = \mathbf{a} - \eta \cdot \mathbf{f}'(\mathbf{a})$

• $f(x) = x^2$



Quick maths revision

- f'(x) = 2x ...derivative of our function used to get the gradient at our point
 f'(10) = 20 ...formula says we move negative to gradient, so says move left along graph, which seems sensible
 - $\circ a = 10$
 - $\circ \eta = 0.1$... something small
 - $\mathbf{b} = 10 0.1 \times 20 = 8$... 8 < 10, so we are moving towards the minimum
- can work for functions with arbitrary number of variables
 f(x,..., z)
- to do this, take partial derivatives of each variable in turn
 - partial derivative. differentiate function for one variable, and fix all other variables (treat as constants)
 - o in terms of *learning*, this means we modify each weight in turn

