

COMPSCI 367 Tutorial 3

Overview

 Machine Learning?

 Well posed learning problems

 Designing a learning system (Checkers)

Machine Learning

• Material taken from “Machine Learning” -
Tom M. Mitchell. Course textbook.

&
• Carl Schultz's 367 tutorial notes from 2008.

Machine Learning

 Learn: to improve automatically with
experience

 Machine Learning: programs that improve
automatically with experience

− e.g,
 successfully recognise spoken words
 play better checkers

Well Posed Learning Problems

 Definition: A computer program is said to learn
from experience E with respect to some class
of tasks T and performance measure P, if its
performance at tasks in T, as measured by P,
improves with experience E.

Well Posed Learning Problems

 T: class of tasks that we want computer
program to do

 P: measure of performance for how well
computer did

 E: some experience program has with task

Well Posed Learning Problems

 A checkers learning problem
− T: playing checkers
− P: percent of games won against opponents
− E playing practice games against itself

Well Posed Learning Problems

 A handwriting recognition learning problem
− T: recognising and classifying handwritten

 words within images
− P: percent of words correctly classified
− E: a database of handwritten words with

given classifications

Well Posed Learning Problems

 A robot driving learning problem
− T: driving on public motorways using vision

 sensors
− P: average distance travelled before an error

(as judged by human overseer)
− E: a sequence of images and steering

 commands recorded while observing a
 human driver

Designing a Learning System

• Goal: Design a system to learn how to play
checkers and enter it into the world checkers
tournament.

– 1) Choose the training experience
– 2) Choose the target function
– 3) Choose a representation for the target

function
– 4) Choose a function approximation algorithm

1) Choose the training experience

16 → 19

Direct

1) Choose the training experience

WIN

Credit Assignment Problem!

Indirect

1) Choose the training experience

• Self-play experiments

• No need for trainer.

Summary (so far)

• Decisions made
– T: playing checkers
– P: percent of games won in the world

 tournament
– E: games played against itself

• Decisions yet to be made
– The exact type of knowledge to be learned
– A representation for this target knowledge
– A learning mechanism

2) Choose the target function

• ChooseMove(B) → M

ChooseMove = 16  19

Difficult, given our training experience

2) Choose the target function

• V(b) → R
– Where V is an evaluation function that maps

board, b, to some real number R.

V = 30 points

Easier to learn

2) Choose the target function

For all legal moves:

- simulate that move

- check the value of the result

Pick the best move

LegalMoves

12  16, or

11  15, or

….

12 16SimulateMove =

V 30 points=

=

2) Choose the target function

• What values should the target function, V,
produce?

…but what about boards in the middle of a game?

2) Choose the target function

b
b ‘

successor(b)

….

….

….
V(b’)=100

Not efficiently computable!

2) Choose the target function

• V is too hard to learn
• Function approximation

– Learn an approximation to ideal target function
V

3) Choose a representation
1) big table?

50

90

input: board score

….

3) Choose a representation

2) CLIPS rules?

IF my piece is near a side edge

THEN score = 80

IF my piece is near the opponents edge

THEN score = 90

….

3) Choose a representation

3) polynomial function?

X1 = 12

X1 = number of white pieces on board

X2 = number of red pieces

X3 = number of white kings

X4 = number of red kings

X5 = number of white pieces threatened by red (can be
captured on red’s next turn)

X6 = number of red pieces threatened by white

X2 = 11

X3 = 0

X4 = 0

X5 = 1

X6 = 0

e.g.

we define some variables…

3) Choose a representation

3) Choose a representation

- Weighted linear combination:

Computer program will change the values of the
weights – it will learn what the weights should be to
give correct score for each board

4) Choose a function approximation
algorithm

• Require a set of training examples
• Ordered pair:
• e.g.

– Black has won (red has no pieces left):

4) Choose a function approximation
algorithm

• What about intermediate board states?

Where Successor(b) is the next board state
following b, which it is again the program's turn
to move (i.e. the board state following the
program's move and the opponents response)

4) Choose a function approximation
algorithm

• b: • Successor(b):

4) Choose a function approximation
algorithm

• Now, we have the training data
• Need an algorithm to adjust the weights to

best fit this training data.
• Common approach: best set of weights will

minimise the squared error, E, between
training values and value predicted by V

4) Choose a function approximation
algorithm

- We wish to minimise E, for the observed training
 examples

4) Choose a function approximation
algorithm

• Need algorithm that will incrementally refine
weights as more training examples become
available

• Needs to be robust to errors in training data
• LMS training rule: will adjust weights a small

amount in the direction that reduces the error

4) Choose a function approximation
algorithm

• LMS weight update rule.
– For each training example <b, Vtrain(b)>

• Use the current weights to calculate
• For each weight wi, update it as

where,

V b

4) Choose a function approximation
algorithm

weight to
update

learning
rate

error

modify weight in proportion to
size of attribute value

Final Algorithm
learning process – playing and learning at same time

computer will play against itself

initialise with random weights (w0=23 etc.)

start a new game - for each board

(a) calculate on all possible legal moves

(b) pick the successor with the highest score

(c) evaluate error

(d) modify each weight to correct error

First time round is essentially
random (because we set the weights
as random) – as it learns should
pick better successors

1 million games later and our
might now predict a useful score for
any board that we might see

V

V

V V
V

Final Algorithm
• (w0 = 25.0, w1 = 15.5, w2 = 19.3, ..., w6 = 54.4)

• (w0 = 82.0, w1 = 15.3, w2 = 9.9, ..., w6 = 100.0)

• (w0 = 67.3, w1 = 0.5, w2 = 3.5, ..., w6 = 30.2)

• …
• (w0 = 3.23, w1 = 1.04, w2 = 4.55, ..., w6 = 0.78)

• Searching hypothesis space for best fit to
observed training data.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

