COMPSCI 367 Tutorial 3

Logic: another thing that |
penguins aren’t very good at.

V oamme S e — —
Overview

* Machine Learning?
* Well posed learning problems

* Designing a learning system (Checkers)

&

e l—— — e - — — e —

Machine Learning

Material taken from “Machine Learning” -
Tom M. Mitchell. Course textbook.

Carl Schultz's 367 tutorial notes from 2008.

Machine Learning

* Learn: to improve automatically with
experience

* Machine Learning: programs that improve
automatically with experience

- e.q,
successfully recognise spoken words
play better checkers

Well Posed Learning Problems

Definition: A computer program is said to learn
from experience E with respect to some class
of tasks T and performance measure P, if its
performance at tasks in T, as measured by P,
Improves with experience E.

Well Posed Learning Problems

* T: class of tasks that we want computer
program to do

* P: measure of performance for how well
computer did

* E: some experience program has with task

Well Posed Learning Problems

* A checkers learning problem
- T: playing checkers
- P: percent of games won against opponents
- E playing practice games against itself

Well Posed Learning Problems

* A handwriting recognition learning problem

- T:recognising and classifying handwritten
words within images

- P: percent of words correctly classified

- E: a database of handwritten words with
given classifications

Well Posed Learning Problems

A robot driving learning problem

T driving on public motorways using vision
Sensors

P: average distance travelled before an error
(as judged by human overseer)

E: a sequence of images and steering
commands recorded while observing a

human driver

Designing a Learning System

Goal: Design a system to learn how to play
checkers and enter it into the world checkers

tournament.

1) Choose the training experience
2) Choose the target function

3) Choose a representation for the target
function

4) Choose a function approximation algorithm

1) Choose the training experience

Direct

1) Choose the training experience

Indirect

1) Choose the training experience

* Self-play experiments

* No need for trainer.

Summary (so far)

« Decisions made
— T: playing checkers

— P: percent of games won in the world
tournament

— E: games played against itself
* Decisions yet to be made

— The exact type of knowledge to be learned
— A representation for this target knowledge
— A learning mechanism

2) Choose the target function

* ChooseMove(B) — M

ChooseMove

Difficult, given our training experience

2) Choose the target function

° V(b) — R

— Where Vis an evaluation function that maps
board, b, to some real number R.

= 30 points

Easier to learn

2) Choose the target function

For all legal moves:

- simulate that move

- check the value of the result

Pick the best move

\—_ e — e

2) Choose the target function

What values should the target function, V,
produce?

— V(b) = 100, if b 15 a final board state that 15 won
— V(b) =-100, 1f b 15 a final board state that 1s lost
— V(b) =0. if b is a final board state that is a draw

...but what about boards in the middle of a game?

2) Choose the target function

— V(b) = V(b"), 1f b 1s not a final state where b” 15 the best final board

state starting from b assuming both players play optimally

Not efficiently computable!

2) Choose the target function

* Vs too hard to learn
* Function approximation

— Learn an approximation to ideal target function

3) Choose a representation

1) big table? input: board score

50

90

3) Choose a representation

2) CLIPS rules?

IF my piece is near a side edge
THEN score = 80

IF my piece is near the opponents edge
THEN score = 90

3) Choose a representation

3) polynomial function? we define some variables...

X, = number of white pieces on board
X, = number of red pieces

X, = number of white kings

X, = number of red kings

X, = number of white pieces threatened by red (can be
captured on red’s next turn)

X = number of red pieces threatened by white

e.g.

W o e S ————— — —

3) Choose a representation

Quick maths revision

e polynomial. expression with linear (+ and —) combination of terms (constants x
. - . : / -2
variables) where exponent is non-negative integer (x* is okay. but x> * or x ~ not
polynomial). e.g. these are polynomial expressions:

o Kj +3

o X +5x+1

W3 0

o X +3x

o flx)=+2 ...isa polynomial function
o 0=x+2 ...1s a polynomial equation

o degree. take a term. sum the exponents of the variables in that term
o x has degree 5
o Xy has degree 2
e degree of a polynomial. is the highest degree of any of the terms — polynomuals
with degree 1 to 5 are given special names

o linear. has degree 1
o quadratic. has degree 2
o cubie. has degree 3
o quartic, has degree 4
o quintic. has degree 5

. quadraigc polynomial. has degree 2. e.g.
o X
o 10x+3+x
e NB: in many cases, people say “quadratic” and mean that the highest allowable
degree is 2 (not necessarily exactly 2), i.e. the degree might be less

—— I ——

3) Choose a representation

- Weighted linear combination:

Computer program will change the values of the
weights — it will /learn what the weights should be to
give correct score for each board

V(b)=tw Hw x, Hw x, 4w x, Hw, x, +w x, Hw,x,

4) Choose a function approximation
algorithm

* Require a set of training examples
* Ordered pair: <b.V,.(0)>

. elg []
— Black has won (red has no pieces left):
| <x,=3,x,=0,x,=1,x,=0,x,=0,x,=0>,+100>
X, = number of white pieces on board X, = number of red kings
X, = number of red pieces X;= number of white pieces threatened by red (can be
o captured on red’s next turn)
X, = number of white kings _ _
X; = number of red pieces threatened by white

Q e = == i —

4) Choose a function approximation

algorithm
What about intermediate board states?

V.. (b))« V (Successor (b))

Where Successor(b) is the next board state
following b, which it is again the program's turn
to move (i.e. the board state following the
program's move and the opponents response)

4) Choose a function approximation

algorithm | '

b: * Successor(b):

4) Choose a function approximation
algorithm

* Now, we have the training data

* Need an algorithm to adjust the weights to
best fit this training data.

 Common approach: best set of weights will
minimise the squared error, E, between
training values and value predicted by 7

(4) Choose a function approximation
algorithm

' - We wish to minimise E, for the observed training
examples

4) Choose a function approximation
algorithm

* Need algorithm that will incrementally refine
weights as more training examples become
available

* Needs to be robust to errors in training data

* LMS training rule: will adjust weights a small
amount in the direction that reduces the error

e e e S—— — e — —— i —

4) Choose a function approximation
algorithm

T S—
%

 LMS weight update rule.
— For each training example <b, V. _(b)>

train

Use the current weights to calculate 7 (b)
For each weight w, update it as

b)—V (b))x,

train (I

woe—w +u(V

where,

V. (b)—V (Successor (b))

train (

N e -

4) Choose a function approximation

algorithm
w.—w. +ulV (Successor (b))— V(b))x.
weightto learning modify weight in proportion to

update rate size of attribute value

&,
i

Final Algorithm

learning process — playing and learning at same time
computer/\ivill play against itself
initialise V with random weights (w,=23 etc.)
start a new game - for each board
(a) calculate /V on all possible legal moves
(b) pick the successor with the highest score
(c) evaluate error
(

d) modify each weight to correct error

First time round /17 is essentially 1 million games later and our /I}
random (because we set the weights might now predict a useful score for

as random) — as it learns J/should any board that we might see
pick better successors

Final Algorithm
(w,=25.0,w, =13.5, w,=19.3, ..., w, = 54.4)
(w,=82.0,w, =15.3,w,=9.9, ..., w, = 100.0)
(w,=67.3,w, =0.5,w,=3.9, ..., w, = 30.2)

(w,=3.23,w, =1.04,w, =459, ..., w, = 0.78)

Searching hypothesis space for best fit to
observed training data.

Quick maths revision

e gradient-descent. finds the local mmimum of a function — does this by moving
direction negative of gradient at the current point
O ais current point
o b is next point
o f*(a) is gradient of function at point a
o 1 1s the size of the step that we’ll take (must be +ve)

b=a-n.f(a)

(10, 100) ...(x, fix))

Quick maths revision

e '(X)=2X ...derivative of our function used to get the gradient at our point
o fY(10)=20 __formula savs we move negative to gradient, so savs move left
along graph, which seems sensible
a=10
o n=0.1 __.something small

o b=10-0.1x20=8 __.8 < 10, sowe are moving towards the minimumn

e can work for functions with arbitrary number of variables

o f(x....2)

e to do this, take partial derivatives of each variable in turn
o partial derivative. differentiate function for one variable, and fix all other
variables (treat as constants)
o in terms of /earning. this means we modify each weight in turn

Determine Type
of Training Experience

Games against

Table of correct
caperts

Gaomes against moves

sel |

Determine
Target Function

Board Bt}ard\

— move — value

Determine Representation

of Learned Function
/mﬂ]

Linecar function Artificial neural

of s1x features nerwork
Petcrmine
Learning Algonthm
) Linear -
Girachent programming
deseent

Completed Desizn

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

