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Overview

 Machine Learning?

 Well posed learning problems

 Designing a learning system (Checkers)



  

Machine Learning

• Material taken from “Machine Learning” - 
Tom M. Mitchell. Course textbook.

&
• Carl Schultz's 367 tutorial notes from 2008.



  

Machine Learning

 Learn: to improve automatically with 
experience

 Machine Learning: programs that improve 
automatically with experience

− e.g,
 successfully recognise spoken words
 play better checkers



  

Well Posed Learning Problems

 Definition: A computer program is said to learn 
from experience E  with respect to some class 
of tasks T  and performance measure P, if its 
performance at tasks in T, as measured by P, 
improves with experience E.



  

Well Posed Learning Problems

 T: class of tasks that we want computer 
program to do

 P: measure of performance for how well 
computer did

 E: some experience program has with task



  

Well Posed Learning Problems

 A checkers learning problem
− T: playing checkers
− P: percent of games won against opponents
− E playing practice games against itself



  

Well Posed Learning Problems

 A handwriting recognition learning problem
− T: recognising and classifying handwritten    

  words within images
− P: percent of words correctly classified
− E: a database of handwritten words with 

given   classifications



  

Well Posed Learning Problems

 A robot driving learning problem
− T: driving on public motorways using vision    

    sensors
− P: average distance travelled before an error 

(as judged by human overseer)
− E: a sequence of images and steering            

     commands recorded while observing a      
     human driver 



  

Designing a Learning System

• Goal: Design a system to learn how to play 
checkers and enter it into the world checkers 
tournament.

– 1) Choose the training experience
– 2) Choose the target function
– 3) Choose a representation for the target 

function
– 4) Choose a function approximation algorithm



  

1) Choose the training experience

16 → 19

Direct



  

1) Choose the training experience

WIN

Credit Assignment Problem!

Indirect



  

1) Choose the training experience

• Self-play experiments

• No need for trainer.



  

Summary (so far)

• Decisions made
– T: playing checkers
– P: percent of games won in the world                

     tournament
– E: games played against itself

• Decisions yet to be made
– The exact type of knowledge to be learned
– A representation for this target knowledge
– A learning mechanism



  

2) Choose the target function

• ChooseMove(B) → M

ChooseMove = 16  19

Difficult, given our training experience



  

2) Choose the target function

• V(b) → R
– Where V is an evaluation function that maps 

board, b, to some real number R.

V = 30 points

Easier to learn



  

2) Choose the target function

For all legal moves:

- simulate that move

- check the value of the result

Pick the best move

LegalMoves

12  16, or

11  15, or

….

12 16SimulateMove =

V 30 points=

=



  

2) Choose the target function

• What values should the target function, V, 
produce?

…but what about boards in the middle of a game?



  

2) Choose the target function

b
b ‘

successor( b )

….

….

….
V(b’)=100

Not efficiently computable!



  

2) Choose the target function

• V is too hard to learn
• Function approximation

– Learn an approximation to ideal target function 
V



  

3) Choose a representation
1) big table?

50

90

input: board score

….



  

3) Choose a representation

2) CLIPS rules?

IF my piece is near a side edge

THEN score = 80

IF my piece is near the opponents edge

THEN score = 90

….



  

3) Choose a representation

3) polynomial function?

X1 = 12

X1 = number of white pieces on board

X2 = number of red pieces

X3 = number of white kings

X4 = number of red kings

X5 = number of white pieces threatened by red (can be 
captured on red’s next turn)

X6 = number of red pieces threatened by white

X2 = 11

X3 = 0

X4 = 0

X5 = 1

X6 = 0

e.g.

we define some variables…



  

3) Choose a representation



  

3) Choose a representation

- Weighted linear combination:

Computer program will change the values of the 
weights – it will learn what the weights should be to 
give correct score for each board



  

4) Choose a function approximation 
algorithm

• Require a set of training examples
• Ordered pair:
• e.g.

– Black has won (red has no pieces left):



  

4) Choose a function approximation 
algorithm

• What about intermediate board states?

Where Successor(b) is the next board state 
following b, which it is again the program's turn 
to move (i.e. the board state following the 
program's move and the opponents response)



  

4) Choose a function approximation 
algorithm

• b: • Successor(b):



  

4) Choose a function approximation 
algorithm

• Now, we have the training data
• Need an algorithm to adjust the weights to 

best fit this training data.
• Common approach: best set of weights will 

minimise the squared error, E, between 
training values and value predicted by V



  

4) Choose a function approximation 
algorithm

- We wish to minimise E, for the observed training         
  examples



  

4) Choose a function approximation 
algorithm

• Need algorithm that will incrementally refine 
weights as more training examples become 
available

• Needs to be robust to errors in training data
• LMS training rule: will adjust weights a small 

amount in the direction that reduces the error



  

4) Choose a function approximation 
algorithm

• LMS weight update rule.
– For each training example <b, Vtrain(b)>

• Use the current weights to calculate 
• For each weight wi, update it as

where,

V b



  

4) Choose a function approximation 
algorithm

weight to
update

learning 
rate

error

modify weight in proportion to 
size of attribute value



  

Final Algorithm
learning process – playing and learning at same time

computer will play against itself

initialise       with random weights (w0=23 etc.)

start a new game - for each board

(a) calculate      on all possible legal moves

(b) pick the successor with the highest score

(c) evaluate error

(d) modify each weight to correct error

First time round        is essentially 
random (because we set the weights 
as random) – as it learns      should 
pick better successors

1 million games later and our     
might now predict a useful score for 
any board that we might see

V

V

V V
V



  

Final Algorithm
• (w0 = 25.0, w1 = 15.5, w2 = 19.3, ..., w6 = 54.4)

• (w0 = 82.0, w1 = 15.3, w2 = 9.9, ..., w6 = 100.0)

• (w0 = 67.3, w1 = 0.5, w2 = 3.5, ..., w6 = 30.2)

• …
• (w0 = 3.23, w1 = 1.04, w2 = 4.55, ..., w6 = 0.78)

• Searching hypothesis space for best fit to 
observed training data. 
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