COMPSCI 367

The Practice of Artificial Intelligence

A.L.L.C.E.'S CREATOR SUDDENLY REALIZES
THAT HE HAS THE LOEBNER PRIZE IN THE BAG.

EITHER THAT, OR A HUGE COMMERCIAL SUCCESS.

-\'t
” ALICE> so...what are
/ you wearing?

T

COMPSCI 367 Tutorial 1

* Introduction |

* Clips Intro

Introduction

* Jonathan Rubin

* jrubin01@gmail.com

* Office Hours: Tuesday 12 — 1pm
* Room 187 (see next slide)

Project Lab

Tutorial Lab \ =

y + P!
Rl LR
- “,_:_' -yl
p— L
TR LAy et
a 2 (% 4= -
Eat i = -
a ’ 3 ’
L T AT = = B S
'l":u""‘ -
o = . ___,.-.--" - - L | ; == b i
gD = L)"
i . g o GhE She
wevs TN oy — . I W= = M= = i
! " - 1
: — e | L ewaw | Ja@ mnm eI =
3 v - _E- ‘. . L .|t_.i_ L J-;."'F' B e a
- C k. e
e I = = + ¥ I C 1 X :
i = 1 g]
* = : £ 3 i 2 2
! 1 ¥ T ¥
b
b

G T e = = = .

First Floor Tutors &

Tutorial Laboratory Markers
R |l (5] i

First Floor
Computer Laboratory

Introduction (cont...)

* Tutorials will mainly focus around
assignments.

- Rule-based expert system (CLIPS)
- Machine Learning (WEKA)
- Planning (Prolog)

Introduction (cont...)

* Based on content by Carl Schultz
(last years 367 tutor)

- http://www.cs.auckland.ac.nz/compsci367s1
c/lectures/Pat.d/

Introduction to Clips

CLIPS Documentation

* User's Guide

http://www.cs.auckland.ac.nz/compsci367s1c/resources/clips/documentation/
usrguide.pdf

* Reference Manual

- Volume |: Basic programming guide

http://www.cs.auckland.ac.nz/compsci367s1c/resources/clips/documentation/
bpg.pdf

- Volume Il: Advanced Programming Guide
- Volume llI: Interfaces Guide

Clips Environment

CLIPS 6.3 =
File Edit Buffer Execution Browse Window Help
nlelal |8 &

@ Dialog Window = |[EH] &2

CLIPS {Quicksilver Beta 3-26-08)
crIess i

Start typing

commands here

/= Gmail - Inbox - jrub...

'j Tutorial 1

& TutonallShdes.ppt-... I

CLIPS6.3

<

C & ¥/ 1036 am.

Clips Overview

* Facts

- Heuristic knowledge based on experience
* Rules

- Knowledge base
* Inference Engine

- Decides which rules should be executed and
when

/

N

Facts
(Sky blue)

(Sun Shining)

»

/

Clips Overview

a

Rules

IFA&B
THEN C

IF X&Y
THEN Z

\
rd

p
Inferenc

Engine

e

>

/

%

-

Agenda

\

/

Facts

* (assert (rain none))
* (assert (sun shining))

* (facts)

CLIFS: (fact=)

il (initial-fact)
f-1 [Talh nOone|
f-¢ (zun shining)
For a total of 3 facts.

CLIFS: |

Facts (cont...)

CLIFS: (facts)

-0 (initial-tact)
f-1 (Talh hone)

f-2 (zun shining)
For a total of 3 facts.

CLIFS:

1

- (retract 1) CLIPS: (acts)

f
| il [nitial-fact)
* (facts) -2 (zun shining)

For a total of 2 facts,
CLIPS:

* (clear)

Deffacts

* (clear) will remove facts

-

* (deffacts weather-facts

Deffacts name

(rain none)

(sun shining)
/ (beaches Piha Bethells Long-bay))

No assert required

) e ———— -

Deffacts (cont...)

* (reset) — keeps rules and deffacts

CLIPSy (reset)

CLIPS: (facts)

il (1nitial-fact)

f-1 (raln none)

f-2 (zun shining)

f-3 (beaches Piha Bethells Long-bay)

For a total of 4 facts.
CLIPS:

(L

Deffacts (cont...)

* (list-deffacts)
* (ppdeffacts weather-facts)

CLIPS: (list-deffacts)
1nitial-fact
weather-facts
For a total of 2 detfacts.
CLIPS: (ppdeffacts weather-facts)
(deffacts MAIN: :weather-facts
(ralh none)
(zun =hining)
(beaches Piha Bethells Long-bavy))
CLIFS: |}

Defrules

e Defines an “IF THEN” rule

* E.q:
(defrule beach-day “should we go to the beach”
(rain none)
.. Patterns
sun shining)
=>
(assert (beach-day true))) Actions

N — -

Rule Activations

Clips attempts to match the patterns of rules
against the facts in the facts-list.

If pattern entities match then the rule is
activated and put on the agenda.

Agenda: Collection of activations. O or more
activations may be on the agenda.

Defrules (cont...)

* (rules)
— List of rules

* (ppdefrule “rule-name?)
— Pretty Print a rule

* (undefrule “rule-name?)

| — Remove a rule

Agenda

CLIFSy (reset)

CLIPSy i(facts)

-0 (initial-fact)
-1 (rain none)
f-2 (sun shining)

t-3 (beaches Piha Bethells Long-hbay)
For a total of 4 facts.

CLIFSy (agenda) _
heach-day: f-1,f-2 «— Matching

I |
/Fl:lr a total of 1 activation, facts

Salience B
{-10,000 to 10,000}

e ————— e e i — —— S

Agenda (cont...)

Need to (run) for rule to fire:

CLIFSy (run)

CLIFS: (tacts)

-0 (witial-fact)

-1 (rain none)
(Eun Ehlnlng)

f-2
= 13 _bF l'llﬂ LDﬂg ha?)

— e

CLIFS}

Agenda (cont...)

What happens if we (run) again???
Nothing Happens!!!

Why?

— Arule is activated if its patterns are matched

by:

1) A brand new pattern entity that did not exist
before or,
2) A pattern entity that did exist before, but was

retracted and reasserted, i.e. a “clone” of the old
pattern entity, and thus now a new pattern

entity.

Values will be bound to variables within rules

Variables

Single-field variable:

?<variable-name>
e.g. 7x, ?colour, ?value etc....

Multifield variable:

$?<variable-name>
e.g. $?colours, $?values

e — — ——mre—m—

Variables (cont...)

* Single-field Variable

* (defrule display-weather “Displays the
weather”

sun ?sunValue Print to the screen (tis
() standard output)

(rain ?rainValuy
L=

(printout t “Sun: ” ?sunValue crlf “Rain: * ?
rainValue crlf))

) e ———— —

Variables (cont...)

CLIFS) (reset)

CLIFSy (facts)

-0 (imtial-fact)
t-1 (rain none)
t-/ (zun =hining)
t-1 (beaches Piha Bethells Long-bay)
For a total of 4 facts.

CLIPS (run)

Sun: shining

Rain: none

(LIS |l

Variables (cont...)

* Multifield Variable
* (defrule display-beac No need for $ on

(beaches $?allBeaches) RHS of rule
=> /

(printout t ?allBeaches crlf))

* Output:
(Piha Bethells Long-bay)

) e ———— =

Deftemplates

Adds structure to facts and rules

Consists of named fields

— Slot: single field
— Multislot: zero or more fields

Allows type declarations: SYMBOL, STRING,
NUMBER ...

Deftemplates (cont...)

- .
rr

(deftemplate student
"Info about students"
(slot name
(type SYMBOL)) ; type of field
(slot 1d

(type NUMBER) ; INTEGER or FLOAT
(default 100))
(multislot papers
(type SYMBOL)
(allowed-symbols compsci36e7 compsci373 compsci34s)))

(deffacts the-students
(student (name jimmy) (papers compsci3é7 compsci345)))|

(defrule get-student-with-id-100

(student (name ?name) (id 100) (papers S?papers))
== |-

(printout t ?name " has 1d 100 and 1s enrolled in " ?papers crlf))

Deftemplates (cont...)

Load the saved clp file

CLIFS: (load student.clp)

Defining deftenplate: student

Defining deffacts:; the-students

Defining defrule:; get-student-with-14-100 +7+]

TRIE

CLIPS: (reset)

CLIFS: (run)

jimmy has 1d 100 and 1= enrolled in (compsci36? compsciidh)

CLIFS: | \

Default Value

TODO

Download & Install Clips (if you haven't
already)

Write, Save and Load some sample clips
programs.

— student, family etc....

Think about how to represent a decision tree
in clips for Assignment 01.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

