COMPSCI 367

The Practice of Artificial Intelligence

A.L.L.C.E.'S CREATOR SUDDENLY REALIZES
THAT HE HAS THE LOEBNER PRIZE IN THE BAG.

EITHER THAT, OR A HUGE COMMERCIAL SUCCESS.
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” ALICE> so...what are
/ you wearing?
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COMPSCI 367 Tutorial 1

* Introduction |

* Clips Intro




Introduction

* Jonathan Rubin

* jrubin01@gmail.com

* Office Hours: Tuesday 12 — 1pm
* Room 187 (see next slide)
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Introduction (cont...)

* Tutorials will mainly focus around
assignments.

- Rule-based expert system (CLIPS)
- Machine Learning (WEKA)
- Planning (Prolog)




Introduction (cont...)

* Based on content by Carl Schultz
(last years 367 tutor)

- http://www.cs.auckland.ac.nz/compsci367s1
c/lectures/Pat.d/




Introduction to Clips




CLIPS Documentation

* User's Guide

http://www.cs.auckland.ac.nz/compsci367s1c/resources/clips/documentation/
usrguide.pdf

* Reference Manual

- Volume |: Basic programming guide

http://www.cs.auckland.ac.nz/compsci367s1c/resources/clips/documentation/
bpg.pdf

- Volume Il: Advanced Programming Guide
- Volume llI: Interfaces Guide




Clips Environment

CLIPS 6.3 =
File Edit Buffer Execution Browse Window Help
nlelal |8 &

@ Dialog Window = |[EH] &2

CLIPS {Quicksilver Beta 3-26-08)
crIess i

Start typing

commands here

/= Gmail - Inbox - jrub...

'j Tutorial 1

& TutonallShdes.ppt-... I

CLIPS6.3
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Clips Overview

* Facts

- Heuristic knowledge based on experience
* Rules

- Knowledge base
* Inference Engine

- Decides which rules should be executed and
when
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Facts

* (assert (rain none))
* (assert (sun shining))

* (facts)

CLIFS: (fact=)

il (initial-fact)
f-1 [Talh nOone|
f-¢ (zun shining)
For a total of 3 facts.

CLIFS: |




Facts (cont...)

CLIFS: (facts)

-0 (initial-tact)
f-1 (Talh hone)

f-2 (zun shining)
For a total of 3 facts.

CLIFS:

1

- (retract 1) CLIPS: ( acts)

f
| il [nitial-fact)
* (facts) -2 (zun shining)

For a total of 2 facts,
CLIPS:

* (clear)




Deffacts

* (clear) will remove facts

-

* (deffacts weather-facts

Deffacts name

(rain none)

(sun shining)
/ (beaches Piha Bethells Long-bay))

No assert required

) e ———— -




Deffacts (cont...)

* (reset) — keeps rules and deffacts

CLIPSy (reset)

CLIPS: (facts)

il (1nitial-fact)

f-1 (raln none)

f-2 (zun shining)

f-3 (beaches Piha Bethells Long-bay)

For a total of 4 facts.
CLIPS:

(L




Deffacts (cont...)

* (list-deffacts)
*  (ppdeffacts weather-facts)

CLIPS: (list-deffacts)
1nitial-fact
weather-facts
For a total of 2 detfacts.
CLIPS: (ppdeffacts weather-facts)
(deffacts MAIN: :weather-facts
(ralh none)
(zun =hining)
(beaches Piha Bethells Long-bavy))
CLIFS: |}




Defrules

e Defines an “IF THEN” rule

* E.q:
(defrule beach-day “should we go to the beach”
(rain none)
.. Patterns
sun shining)
=>
(assert (beach-day true))) Actions

N — -




Rule Activations

Clips attempts to match the patterns of rules
against the facts in the facts-list.

If pattern entities match then the rule is
activated and put on the agenda.

Agenda: Collection of activations. O or more
activations may be on the agenda.




Defrules (cont...)

* (rules)
— List of rules

* (ppdefrule “rule-name?)
—  Pretty Print a rule

* (undefrule “rule-name?)

| —  Remove a rule




Agenda

CLIFSy (reset)

CLIPSy i(facts)

-0 (initial-fact)
-1 (rain none)
f-2 (sun shining)

t-3 (beaches Piha Bethells Long-hbay)
For a total of 4 facts.

CLIFSy (agenda) _
heach-day: f-1,f-2 «— Matching

I |
/Fl:lr a total of 1 activation, facts

Salience B
{-10,000 to 10,000}

e ————— e e i — —— S




Agenda (cont...)

Need to (run) for rule to fire:

CLIFSy (run)

CLIFS: (tacts)

-0 (witial-fact)

-1 (rain none)
(Eun Ehlnlng)

f-2
= 13 _bF l'llﬂ LDﬂg ha?)

— e

CLIFS}




Agenda (cont...)

What happens if we (run) again???
Nothing Happens!!!

Why?

— Arule is activated if its patterns are matched

by:

1) A brand new pattern entity that did not exist
before or,
2) A pattern entity that did exist before, but was

retracted and reasserted, i.e. a “clone” of the old
pattern entity, and thus now a new pattern

entity.




Values will be bound to variables within rules

Variables

Single-field variable:

?<variable-name>
e.g. 7x, ?colour, ?value etc....

Multifield variable:

$?<variable-name>
e.g. $?colours, $?values




e — — ——mre—m—

Variables (cont...)

* Single-field Variable

* (defrule display-weather “Displays the
weather”

sun ?sunValue Print to the screen (tis
( ) standard output)

(rain ?rainValuy
L=

(printout t “Sun: ” ?sunValue crlf “Rain: * ?
rainValue crlf))

) e ———— —




Variables (cont...)

CLIFS) (reset)

CLIFSy (facts)

-0 (imtial-fact)
t-1  (rain none)
t-/  (zun =hining)
t-1  (beaches Piha Bethells Long-bay)
For a total of 4 facts.

CLIPS (run)

Sun: shining

Rain: none

(LIS |l




Variables (cont...)

* Multifield Variable
* (defrule display-beac No need for $ on

(beaches $?allBeaches) RHS of rule
=> /

(printout t ?allBeaches crlf))

* Output:
(Piha Bethells Long-bay)

) e ———— =




Deftemplates

Adds structure to facts and rules

Consists of named fields

— Slot: single field
— Multislot: zero or more fields

Allows type declarations: SYMBOL, STRING,
NUMBER ...




Deftemplates (cont...)

- .
rr

(deftemplate student
"Info about students"
(slot name
(type SYMBOL)) ; type of field
(slot 1d

(type NUMBER) ; INTEGER or FLOAT
(default 100))
(multislot papers
(type SYMBOL)
(allowed-symbols compsci36e7 compsci373 compsci34s)))

(deffacts the-students
(student (name jimmy) (papers compsci3é7 compsci345)))|

(defrule get-student-with-id-100

(student (name ?name) (id 100) (papers S?papers))
== |-

(printout t ?name " has 1d 100 and 1s enrolled in " ?papers crlf))




Deftemplates (cont...)

Load the saved clp file

CLIFS: (load student.clp)

Defining deftenplate: student

Defining deffacts:; the-students

Defining defrule:; get-student-with-14-100 +7+]

TRIE

CLIPS: (reset)

CLIFS: (run)

jimmy has 1d 100 and 1= enrolled in (compsci36? compsciidh)

CLIFS: | \

Default Value




TODO

Download & Install Clips (if you haven't
already)

Write, Save and Load some sample clips
programs.

— student, family etc....

Think about how to represent a decision tree
in clips for Assignment 01.
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