

Introduction to Prolog

Introduction to Prolog

 Material taken from text:
− PROLOG Programming for Artificial

Intelligence by Ivan Bratko.
 Online Tutorials:

– http://kti.ms.mff.cuni.cz/~bartak/prolog/

– http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/intro.
html

A Family Tree

 parent(pam, bob).
 parent(tom, bob).
 parent(tom, liz).
 parent(bob, ann).
 parent(bob, pat).
 parent(pat, jim).

Clauses

A Family Tree

tom

bob

ann

liz

jim

pat

pam

A Family Tree
 ?- parent(bob, pat).

− yes
 ?- parent(liz, pat).

− no
 ?- parent(X, liz).

− X = tom
 ?- parent(bob, X)

− X = ann;
− X = pat;
− no

Atoms

Variable

Continue

tom

bob

ann

liz

jim

pat

pam

A Family Tree

Who is a grandparent of jim?
− ?- parent(Y, jim), parent(X, Y).
− X = bob
− Y = pat

Conjunction

tom

bob

ann

liz

jim

pat

pam

A Family Tree

 female(pam).
 male(tom).
 male(bob).
 female(liz).
 female(pat).
 female(ann).
 male(jim).

tom

bob

ann

liz

jim

pat

pam

A Family Tree

 Offspring
− For all X and Y,

 Y is an offspring of X if
 X is a parent of Y.

 Prolog Rule:
− offspring(Y, X) :- parent(X, Y).

conditionconclusion

A Family Tree

 Mother
− mother(X, Y) :- parent(X, Y), female(X).

X

Y

female

motherparent

A Family Tree

 sister(X, Y) :-
 parent(Z, X),
 parent(Z, Y),
 female(X).

Z

Xfemale

parent

Y

parent

sister

A Family Tree

 sister(X, pat).
− X = ann;
− X = pat

 Our rule does not mention
that X and Y must not be the
same and so will find that any
female who has a parent is a sister of herself!

tom

bob

ann

liz

jim

pat

pam

A Family Tree

 New sister relation:
− sister(X, Y) :-

parent(Z, X),
parent(Z, Y),
female(X),
different(X, Y).

A Family Tree

• Recap
– Male/Female
– Offspring
– Mother
– Grandparent
– Sister

A Family Tree

 A Recursive Rule (Predecessor)
X

Y

Z

...

parent

predecessor

predecessor

X

Z

parent predecessor

A Family Tree

 Prolog Clause:
− predecessor(X, Y) :-

parent(X, Y),
− predecessor(X, Z) :-

parent(X, Y),
predecessor(Y, Z).

A Family Tree

 ?- predecessor(pam, X).
− X = bob;
− X = ann;
− X = pat;
− X = jim;

tom

bob

ann

liz

jim

pat

pam

How prolog answers questions.

 ?- predecessor(tom, pat).
− Only relevant clauses are pr1 and pr2.
− Heads of these rules match the goal.
− Prolog chooses the first clause (pr1)

 predecessor(X, Z) :-
parent(X, Z).

 X = tom
 Z = pat

− New goal:
 parent(tom, pat).

How prolog answers questions.

parent(tom, pat)

predecessor(tom, pat)

by rule pr1

How prolog answers questions.

• Prolog now chooses the second clause (pr2)
– predecessor(X, Z) :-

parent(X, Y),
predecessor(Y, Z).

– X = tom
– Z = pat
– Y not yet instantiated

How prolog answers questions.

parent(tom, pat)

predecessor(tom, pat)

by rule pr1

parent(tom, Y)
predecessor(Y, pat)

by rule pr2

Two new goals

How prolog answers questions.

• Y = bob
• parent(tom, bob)
• predecessor(bob, pat)

parent(tom, Y)
predecessor(Y, pat)

Current Goals
tom

bob

ann

liz

jim

pat

pam

How prolog answers questions.

• By pr1:
– predecessor(X', Z') :-

parent(X', Z').
• =>

– parent(bob, pat)

predecessor(bob, pat)
tom

bob

ann

liz

jim

pat

pam

How prolog answers questions.

parent(tom, pat)

predecessor(tom, pat)

by rule pr1

parent(tom, Y)
predecessor(Y, pat)

by rule pr2

predecessor(bob, pat)

parent(bob, pat)
yes

Y = bob by fact parent(tom, bob)

by rule pr1

Monkey & Banana

The Problem:
– There is a monkey at the door into a room. In

the middle of the room a banana is hanging
from the ceiling. The monkey is hungry and
wants to get the banana, but he cannot stretch
high enough from the floor. At the window of
the room there is a box the monkey may use.

Monkey & Banana

• The monkey can perform the following
actions:

– Walk on the floor
– Climb the box
– Push the box around (if it is already at the box)
– Grasp the banana if standing on the box

directly under the banana.

Monkey & Banana

• Monkey World is described by some 'state'
that can change in time.

• Current state is determined by the position of
the objects

• State:
– Monkey Horizontal
– Monkey Vertical
– Box Position
– Has Banana

Monkey & Banana

• Initial State:
– Monkey is at the door
– Monkey is on floor
– Box is at window
– Monkey does not have banana

• In prolog:
– state(atdoor, onfloor, atwindow, hasnot).

functor

Monkey & Banana

• Goal:
– state(_, _, _, has).

Anonymous Variables

Monkey & Banana

• Allowed Moves:
– Grasp banana
– Climb box
– Push box
– Walk around

• Not all moves are possible in every possible
state of the world e.g. grasp is only possible
if the monkey is standing on the box directly
under the banana and does not have the
banana yet.

Monkey & Banana

• Move from one state to another
• In prolog:

– move(State1, Move, State2)

Grasp
Climb
Push
Walk

Monkey & Banana

• Grasp
– move(state(middle, onbox, middle, hasnot),

grasp,
state(middle, onbox, middle, has)).

Monkey & Banana

• Climb
– move(state(P, onfloor, P, H),

climb,
state(P, onbox, P, H)).

Monkey & Banana

• Push
– move(state(P1, onfloor, P1, H),

push(P1, P2),
state(P2, onfloor, P2, H)).

Monkey & Banana

• Walk
– move(state(P1, onfloor, B, H),

walk(P1, P2),
state(P2, onfloor, B, H)).

Monkey & Banana

• Main question our program will pose:
– Can the monkey in some initial state get the

banana?
• Prolog predicate:

– canget(State)

Monkey & Banana

• Canget(State)
– (1) For any state in which the monkey already

has the banana the predicate is true
– canget(state(_, _, _, has)).

Monkey & Banana

• Canget(State)
– (2) In other cases one or more moves are

necessary. The monkey can get the banana in
any state (State1) if there is some move
(Move) from State1 to some state (State2),
such that the monkey can get the banana in
State2 (in zero or more moves).

– canget(State1) :-
move(State1, Move, State2),
canget(State2).

Monkey & Banana

• Questions:
– ?- canget(state(atwindow, onfloor, atwindow, has)).
– Yes
– ?- canget(state(atdoor, onfloor, atwindow, hasnot)).
– Yes

– ?- canget(state(atwindow, onbox, atwindow, hasnot)).
– No

Monkey & Banana

• Clause Order
– Grasp
– Climb
– Push
– Walk

• Effectively says that the monkey prefers
grasping to climbing, climbing to pushing
etc...

• This order of preferences helps the monkey
to solve the problem.

Monkey & Banana

• Reorder Clauses
– Walk
– Grasp
– Climb
– Push

• This results in an infinite loop!
– As the first move the monkey chooses will

always be move, therefore he moves
aimlessly around the room.

Monkey & Banana

• Conclusion:
– A program in Prolog may be declaratively

correct, but procedurally incorrect.
– i.e. Unable to find a solution when a solution

actually exists.
• However, there are methods that solve this

problem.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

