
1

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

CompSci.367
The Practice of Artificial Intelligence

CLIPS
Assoc. Prof. Ian Watson

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Overview

CLIPS is a programming language that
provides support for rule-based, object-
oriented and procedural programming.
The search in the Inference Engine uses
forward chaining and rule prioritization.
Looks like LISP (List Processing) with
object features
Developed by NASA in the 80s

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Object Features
CLIPS Object-Oriented Language
(COOL) is a hybrid of features found in
Common Lisp Object and SmallTalk.
Example: object template or frame for a
bearing

(deftemplate bearing
(slot type) (slot size) (slot load) (slot
lubrication) (slot max_temperature). . .)

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

New Paradigm
NOT LIKE JAVA / C++ !
Provide information on what to do not
how to do it.

(no algorithms to define)

(-ve) Can take a little getting used to
(+ve) Very small code size to do
complicated adaptable things

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Facts
Create: (assert [facts])
(facts) (clear)
Facts may be a list of atoms

(foo bar baz)
(foo (bar baz))

Facts may be anything (symbols, not variables)
(size 3.5)
(mood happy) (mood grumpy)
(hand player1 AD QC 3H)

Symbols are any sequence of ascii characters
May not begin with $? or ?
May begin with < but not contain it

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Example
(assert (person name Daniel))

(assert (age Daniel 24))
(assert (gender Daniel M))
(assert (friends Daniel Simon
Jane))

2

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Templates
Used to create objects (nested facts,
complex information)
(deftemplate [name] [comment]

[list of attributes])

Simplifies related facts
Makes facts uniform
Order of attributes irrelevant

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Example
(deftemplate person "information about a
person"
(slot name)
(slot gender (allowed-symbols M F N))
(slot age (type NUMBER))
(multislot friends)

)

(assert (person (name Daniel) (age 24)
(gender M) (friends Simon Jane)))

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Another Example
(deftemplate critter "taxonomic info"
(slot domain)(slot kingdom)
(slot phylum)(slot class)
(slot order) (slot family)
(slot genus) (slot species))

Giant Atlantic Squid:
(critter (domain eukarya) (kingdom
animalia) (phylum mollusca) (class
cephalopoda) (order tuethida) (family
Architeuthidae) (genus Architeuthis)
(species dux))

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

deffacts
Creates initial knowledge
Can contain anything you can assert
Only asserted when the engine is reset

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Car Frame or Template Example
Slots Fillers
Name car name
Type sedan, sports, station_wagon

. .
Manufacturer GM, Ford, Chrysler, Toyota . .

.
Owner Name of owner
Wheels 4, 6
Transmission manual, automatic
Engine gasoline, diesel, methanol
Condition lemon, OK, peach
Under-warranty no, yes

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Car Instance Example
Slots Fillers
Name Alice’s car
Type station_wagon
Manufacturer GM
Owner Alice M. Agogino
Wheels 4
Transmission manual
Engine gasoline
Condition OK
Under-warranty yes

3

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

example
(deffacts nice “stuff that is tasty”
(nice watermelon)
(nice fudgecake)
(nice burgers))

(deffacts nasty “stuff that is yuck”
(foul old-cabbage)
(foul slimy-fungus)
(foul apricot-and-chicken))

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Typing in clips
Not strictly typed (symbols not
variables)
Atoms (any single datum)
Performs run-time checking on type
(* a 3) gives an error
Interpreted therefore no compilation
errors

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Playing with the engine
(facts) list the current facts
(clear) clear the engine

Clears facts, templates, rules and functions
(reset) clear all the current facts

Asserts all deffacts and another fact called
(initial-fact)

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

recap
CLIPS

Basics
Facts
Templates
Deffacts
Execution control

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Variables
?*
?name
?stuff-and-things

Used in functions,rules

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Functions
Used to compute simple values

Not as useful as rules, but simpler to
describe

(deffunction [name] ([arglist]) [action])

4

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Example
(deffunction fibbonacci (?f)

(if (or (= ?f 1) (= ?f 0))then
1

else
(+ (fibbonacci (- ?f 1))

(fibbonacci (- ?f 2))
)

)
)

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

In built functions
(+) (-) (*) (\) (**) (mod)
(=) (<) (>) (<=) (>=) (<>)
(and) (or) (not)

(random min max)
(sin) (cos) (tan) (sqrt)
(printout t “hello” crlf)

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Rules
Use matching to decide if a rule can be
fired
(defrule [conditions] => [results])

If the left hand side of a rule is
satisifed, that rule is “fired”
Basic method is satisfying a fact exists

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

example
(defrule see
(name frank)
=>
(assert (seen frank))
)

(defrule greet
(seen frank)
=>
(assert (greet frank))
)

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Execution handling
(run) starts the inference engine
(run n) fire the next n rules

(agenda) shows the rules that can
be executed
(rules) list all the rules in memory

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Binding
Use variables to test values and to pass
information
(fact ?name)

Binds (fact a), (fact b)

5

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Using Bindings
Explicit binding

(bind ?percent-chance (random 1 100))

Bindings in test cases
(defrule check-if-positive

(value ?v)
(> ?v 0)
=>
(assert (is-positive ?v)))

If a fact exists the binding
evaluates to TRUE
Implicit conjunction on the LHS

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Fact references
?name <- (fact)

(retract ?name)
Opposite of (assert), removes from
factlist

(modify ?name (new-fact))
Changes fact to new-fact

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Recap
Variables
Functions
Rules
Binding
Fact References

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

salience
Tells the engine what the priority of a
rule is (0-255)
(defrule is-silly (declare (salience 10))

(is-silly ?x) =>
(printout t ?x “ is a silly thing” crlf))

(defrule is-still-silly (declare (salience 5))
(is-silly ?x) =>
(printout t ?x “ is still silly” crlf))

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Rule firing
A rule that can fire is activated
A rule is activated when all the left hand side
condition are met
How come rules don’t fire twice if the facts
are not altered?

All facts are “stamped” with the time of creation
All rules are “stamped” with the time it last fired
If all the times for the facts on the left hand side
are earlier than the time the rule last fired, the
rule can activate

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

The Agenda
The agenda contains all rules that can
be fired
Agenda is sorted according to salience
If any rules can be fired and have the
same salience: a strategy is used to
resolve the conflict.

6

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

strategies
Depth: newer activated rules first
Breadth: newer activated rules last
Simplicity: rules with less conditions first
Complexity: more conditions first
LEX: fire rules that use more recent facts
MEA: uses the time tag of the first element
Random: select randomly

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Debugging in CLIPS
Use the fact list and the agenda to work out what is
firing (compared to what should be firing)
Use (run 1) to step through rules

(watch [all,facts,rules,activations])
Can specify template/rule names to watch

(set-break rule-name)
Stops before rule is executed

(dribble-on file-name)
Outputs a trace (all facts and rule firings) to the specified file

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

i/o functions
(printout t “hello” crlf)

Output to the terminal
(read)

Returns a single element
(readline)

Returns a string

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

files
(open “file.foo” file-handle “r”)
(readline file-handle)

“r” = read, “w” = write, “a” = append,
“r+” = read and append, “wb” = write
binary

(close file-handle)

Closes the file stream

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Fact <=> String functions

Useful for converting input to facts

(create$ (list of stuff))
Creates the list “on the fly”

(explode$ (create$ this that the
other thing))
“this that the other thing”

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

recap
Methods for processing lists
Salience
How rules are chosen to execute
Debugging
I/O and strings

7

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

JESS

CLIPS + java
(since you’ve probably noticed

CLIPS has no interface)

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Quick Note
JESS 6.0 does NOT WORK WITH J2SDK
5.0
Assert is now a keyword

You could alter the source and delete the
assert methods since we aren’t using them

30 day trialware (can download for free
from the university)

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Importing and compiling JESS
Package jess
jess.* is all you need
Also jess.awt.* and jess.factory.*
(not very useful)

Must have jess.jar in the classpath
(JESS 6.1)
javac –cp jess.jar;. File.java
java –cp jess.jar;. File

Must deal with JessException
© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

The Rete class
Holds the CLIPS script
No parser of its own (use Jesp class)

Rete infEngine = new Rete();
Jesp parser = new Jesp(new FileReader(“me.clp”),

r);
Parser.parse();
// can now use the rete class

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Execution of the Rete class
Managing execution from java
Rete.run()
Rete.run(int max)
Rete.reset()
Rete.clear()
Rete.halt()

Same as the corresponding CLIPS
functions

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Manipulating the Rete class
Adding Facts

Fact f = new Fact(“fact”, r);

r.assertFact(f);
r.assertString(“(this is a fact)”);

Setup values from the java program

Removing facts
r.retract(new Fact(“foo”, r));
r.retractString(“(imagonna)”);

8

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Getting information from the Rete

Various methods return iterators
Rete.listFacts();
Rete.listDefrules();

Rete.listDeftemplates();
Rete.listDeffacts();
Rete.listFunctions();

listFacts() most useful
Can use toString()

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Listening to JESS
Much like listening to AWT/Swing events
Interface JessListener
void eventHappened(JessEvent je)
r.addJessListener(JessListener jel);

JessEvent
int getType(); types are defined as public
ints
Object getObject(); returns the object
correponding to the event

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Values
Generic holder for symbols ints reals
strings
Associated with Facts
May be returned from the JessListener
longValue()
doubleValue()
stringValue()
type() (as an int)

RU.ATOM, RU.STRING, RU.SLOT, RU.MULTISLOT.

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Advantages of JESS
Scripting is a Good Thing

You don’t need to recompile the interface, you can
easily fix the inference engine

Allows a GUI or internet interface for the
inference engine

(clips console == ugly)
Can have multiple Rete Classes in a single
program

Dealing with multiple instances of the same
problem (using Rete.clone())
Allow concurrent different problems to be run

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Ideas for using JESS
Parse a script then assert the descriptive
facts, run the engine and get the solution.

Note: you need to make sure that the script and
the program agree on output

Rete classes aren’t threaded: add a threaded
subclass and have them run concurrently
As mentioned: pretty GUI or server
Use the java program to redirect output from
one inference engine as input to another.

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Recap
The Rete and Jesp classes
Adding information to the Rete
Getting information from the Rete
Listening to the Rete
Some tips and ideas

