The
University
of Auekland

CompSci.367

The Practice of Artificial Intelligence

CLIPS
Assoc. Prof. lan Watson

© Universiﬂ of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

mem Object Features

of Auekland

= CLIPS Object-Oriented Language
(COOL) is a hybrid of features found in
Common Lisp Object and SmallTalk.

= Example: object template or frame for a
bearing
= (deftemplate bearing

(slot type) (slot size) (slot load) (slot
lubrication) (slot max_temperature). . .)

© University of Auckland www.cs.auckland.ac.nz/—ian/

jan@cs.auckland.ac.nz

e -acts

of Auekland

= Create: (assert [facts])
= (facts) (clear)
= Facts may be a list of atoms
= (foo bar baz)
= (foo (bar baz))
= Facts may be anything (symbols, not variables)
= (size 3.5)
= (mood happy) (mood grumpy)
= (hand playerl AD QC 3H)
= Symbols are any sequence of ascii characters
= May not begin with $? or ?
= May begin with < but not contain it

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

e Overview

of Auekland

= CLIPS is a programming language that
provides support for rule-based, object-
oriented and procedural programming.

= The search in the Inference Engine uses
forward chaining and rule prioritization.

= Looks like LISP (List Processing) with
object features

= Developed by NASA in the 80s

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

mem New Paradigm

of Auekland

= NOT LIKE JAVA / C++ !

= Provide information on what to do not
how to do it.

= (no algorithms to define)
= (-ve) Can take a little getting used to

= (+ve) Very small code size to do
complicated adaptable things

© University of Auckland www.cs.auckland.ac.nz/—ian/ jan@cs.auckland.ac.nz

e Example

of Auckland
(assert (person name Daniel))
(assert (age Daniel 24))
(assert (gender Daniel M))

(assert (friends Daniel Simon
Jane))

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

Templates

Un 3
of Auekland

Used to create objects (nested facts,

complex information)

(deftemplate [name] [comment]
[list of attributes])

Simplifies related facts
Makes facts uniform
= Order of attributes irrelevant

© Universiﬂ of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Another Example

(deftemplate critter "taxonomic info"
(slot domain) (slot kingdom)
(slot phylum) (slot class)
(slot order) (slot family)
(slot genus) (slot species))

Giant Atlantic Squid:

(critter (domain eukarya) (kingdom
animalia) (phylum mollusca) (class
cephalopoda) (order tuethida) (family
Architeuthidae) (genus Architeuthis)
(species dux))

© University of Auckland www.cs.auckland.ac.nz/—ian/

jan@cs.auckland.ac.nz

=

-
g2 Car Frame or Template Example
iy Slots Fillers

Name car name
Type sedan, sports, station_wagon
Manufacturer GM, Ford, Chrysler, Toyota . .
Owner Name of owner
Wheels 4,6
Transmission manual, automatic
Engine gasoline, diesel, methanol
Condition lemon, OK, peach
Under-warranty no, yes

|© University of Auckland__________www.cs.auckland.ac.nz/zian/ ________ian@cs.auckiand.acnz |

Example

(deftemplate person "information about a
person™

(slot name)
(slot gender (allowed-symbols M F N))
(slot age (type NUMBER))
(nultislot friends)
)

(assert (person (name Daniel) (age 24)
(gender M) (friends Simon Jane)))

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

deffacts

= Creates initial knowledge
= Can contain anything you can assert
= Only asserted when the engine is reset

© University of Auckland www.cs.auckland.ac.nz/—ian/ jan@cs.auckland.ac.nz

Car Instance Example

Slots Fillers
Name Alice’s car

Type station_wagon
Manufacturer GM

Owner Alice M. Agogino
Wheels 4
Transmission manual

Engine gasoline
Condition OK

Under-warranty yes

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

example

(deffacts nice “stuff that is tasty”
(nice watermelon)
(nice fudgecake)
(nice burgers))

(deffacts nasty “stuff that is yuck”
(foul old-cabbage)
(foul slimy-fungus)
(foul apricot-and-chicken))

© Universiﬂ of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

M Playing with the engine

of Auekland

s (facts) list the current facts
s (clear) clear the engine

= Clears facts, templates, rules and functions
= (reset) clear all the current facts

= Asserts all deffacts and another fact called
(initial-fact)

© University of Auckland www.cs.auckland.ac.nz/—ian/ jan@cs.auckland.ac.nz

Variables

m ?*
= ?name
= ?stuff-and-things
= Used in functions,rules

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

Typing in clips

= Not strictly typed (symbols not
variables)

Atoms (any single datum)
= Performs run-time checking on type
(* a 3) gives an error

Interpreted therefore no compilation
errors

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

B recap

of Auekland

= CLIPS
= Basics
= Facts
= Templates
= Deffacts
= Execution control

© University of Auckland www.cs.auckland.ac.nz/—ian/ jan@cs.auckland.ac.nz

Functions

= Used to compute simple values

= Not as useful as rules, but simpler to
describe

= (deffunction [name] ([arglist]) [action])

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

(deffunction fibbonacci (?F)
(f (or (= ?f 1) (= ?f 0))then
1

else
+ (Fibbonacci (- ?f 1))
(fibbonacci (- ?f 2))

© Universiﬂ of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz
M Rules

of Auekland

= Use matching to decide if a rule can be
fired

= (defrule [conditions] => [results])

If the left hand side of a rule is
satisifed, that rule is “fired”

Basic method is satisfying a fact exists

© University of Auckland www.cs.auckland.ac.nz/—ian/ jan@cs.auckland.ac.nz

Execution handling

= (run) starts the inference engine
= (run n) fire the next n rules

= (agenda) shows the rules that can
be executed

= (rules) list all the rules in memory

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

In built functions

=) G D))) (mod)
s GE)E)CE) =) CEE) (=)
« (and) (or) (not)

= (random min max)

= (sin) (cos) (tan) (sqrt)

= (printout t “hello” crif)

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

wem cxample

of Auekland

(defrule see
(name frank)
=>
(assert (seen frank))

D)

(defrule greet
(seen frank)
=>
(assert (greet frank))
)

© University of Auckland www.cs.auckland.ac.nz/—ian/ jan@cs.auckland.ac.nz

Binding

= Use variables to test values and to pass
information

= (fact ?name)
= Binds (Fact a), (fact b)

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

Using Bindings

= Explicit binding
= (bind ?percent-chance (random 1 100))
= Bindings in test cases

(defrule check-if-positive
(value ?v)
G ?v 0)
=>
(assert (is-positive ?v)))

n If a fact exists the binding
evaluates to TRUE

= Implicit conjunction on the LHS

© Universiﬂ of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

o Recap

ty
of Auekland

= Variables

= Functions

= Rules

= Binding

= Fact References

© University of Auckland www.cs.auckland.ac.nz/—ian/ jan@cs.auckland.ac.nz

Rule firing

= A rule that can fire is activated

= A rule is activated when all the left hand side
condition are met

= How come rules don't fire twice if the facts
are not altered?
= All facts are “stamped” with the time of creation
= All rules are “stamped” with the time it last fired

= If all the times for the facts on the left hand side
are earlier than the time the rule last fired, the
rule can activate

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

Fact references

= ?name <- (fact)
= (retract ?name)

= Opposite of (assert), removes from
factlist

= (modify ?name (new-fact))
= Changes fact to new-fact

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

M salience

ity
of Auekland

= Tells the engine what the priority of a
rule is (0-255)

(defrule is-silly (declare (salience 10))
(is-silly ?x) =>
(printout t ?x “ is a silly thing” crif))
(defrule is-still-silly (declare (salience 5))
(is-silly ?x) =>
(printout t ?x “ is still silly” crlf))

© University of Auckland www.cs.auckland.ac.nz/—ian/ jan@cs.auckland.ac.nz

The Agenda

= The agenda contains all rules that can
be fired
= Agenda is sorted according to salience

= If any rules can be fired and have the
same salience: a strategy is used to
resolve the conflict.

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

strategies

= Depth: newer activated rules first

= Breadth: newer activated rules last

= Simplicity: rules with less conditions first

= Complexity: more conditions first

= LEX: fire rules that use more recent facts

= MEA: uses the time tag of the first element
= Random: select randomly

© Universiﬂ of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Debugging in CLIPS

= Use the fact list and the agenda to work out what is
firing (compared to what should be firing)

= Use (run 1) to step through rules

= (watch [all,facts,rules,activations])
= Can specify template/rule names to watch
= (set-break rule-name)
= Stops before rule is executed
= (dribble-on file-name)
= Outputs a trace (all facts and rule firings) to the specified file

N i/0 functions

ty
of Auekland

= (printout t “hello” crlIf)
= Output to the terminal

= (read)
= Returns a single element

= (readline)
= Returns a string

© University of Auckland www.cs.auckland.ac.nz/—ian/ jan@cs.auckland.ac.nz

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

University

of Auekland

= (open “file.foo” file-handle “r’)
= (readline file-handle)
= “r” = read, “w” = write, “a” = append,
“r+” = read and append, “wb” = write
binary
= (close file-handle)

= Closes the file stream

© University of Auckland www.cs.auckland.ac.nz/—ian/ jan@cs.auckland.ac.nz

Fact <=> String functions

» Useful for converting input to facts

= (create$ (list of stuff))
= Creates the list “on the fly”

= (explode$ (create$ this that the
other thing))

= “this that the other thing”

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

recap

= Methods for processing lists

= Salience

= How rules are chosen to execute
Debugging

1/0 and strings

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

JESS

CLIPS + java

(since you've probably noticed
CLIPS has no interface)

© Universiﬂ of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Importing and compiling JESS

= Package jess
= jess.*is all you need
= Also Jess.awt._* and jess.factory.*

(not very useful)

= Must have jess.jar in the classpath
(JESS 6.1)
= javac —-cp jess.jar;. File.java
= Java —cp jess.jar;. File

= Must deal with JessException

© University of Auckland www.cs.auckland.ac.nz/—ian/ jan@cs.auckland.ac.nz

Execution of the Rete class

= Managing execution from java
= Rete.run()
= Rete.run(int max)
= Rete.reset()
= Rete.clear()
= Rete_halt()

= Same as the corresponding CLIPS

functions
© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Quick Note

= JESS 6.0 does NOT WORK WITH J2SDK
5.0
= Assert is now a keyword
= You could alter the source and delete the
assert methods since we aren’t using them
= 30 day trialware (can download for free
from the university)

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

The Rete class

versity
of Auekland

= Holds the CLIPS script
= No parser of its own (use Jesp class)

Rete infEngine = new Rete();

Jesp parser = new Jesp(new FileReader(“me.clp™),
nN;

Parser.parse();

// can now use the rete class

© University of Auckland www.cs.auckland.ac.nz/—ian/ jan@cs.auckland.ac.nz

Manipulating the Rete class

= Adding Facts
Fact f = new Fact(*“fact”, r);
r.assertFact(f);
r.assertString(“(this is a fact)”);

= Setup values from the java program

= Removing facts
r.retract(new Fact(“foo”, r));
r.retractString(“(imagonna)’);

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

Getting information from the Rete

= Various methods return iterators
= Rete.listFacts();
= Rete_listDefrules();
= Rete.listDeftemplates();
= Rete.listDeffacts();
= Rete._listFunctions();
= listFacts() most useful
= Can use toString()

© Universiﬂ of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

e \/alues

ty
of Auekland

= Generic holder for symbols ints reals
strings

= Associated with Facts

= May be returned from the JessListener
= longvalue()
= doubleValue()
= stringValue()

= type() (as an int)

= RU.ATOM, RU.STRING, RU.SLOT, RU.MULTISLOT.

© University of Auckland www.cs.auckland.ac.nz/—ian/ jan@cs.auckland.ac.nz

Ideas for using JESS

= Parse a script then assert the descriptive
facts, run the engine and get the solution.
= Note: you need to make sure that the script and
the program agree on output
= Rete classes aren'’t threaded: add a threaded
subclass and have them run concurrently
= As mentioned: pretty GUI or server

= Use the java program to redirect output from
one inference engine as input to another.

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

Listening to JESS

= Much like listening to AWT/Swing events
= Interface JessListener
= void eventHappened(JessEvent je)
= r.addJessListener(JessListener jel);
= JessEvent
= int getType(); types are defined as public
ints
= Object getObject(); returns the object
correponding to the event

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

e Advantages of JESS
of Auckland
= Scripting is a Good Thing
= You don’t need to recompile the interface, you can
easily fix the inference engine
= Allows a GUI or internet interface for the
inference engine
= (clips console == ugly)
= Can have multiple Rete Classes in a single
program

= Dealing with multiple instances of the same
problem (using Rete.clone())

= Allow concurrent different problems to be run

© University of Auckland

www.cs.auckland.ac.nz/—ian/ jan@cs.auckland.ac.nz

Recap

= The Rete and Jesp classes

= Adding information to the Rete

= Getting information from the Rete
= Listening to the Rete

= Some tips and ideas

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

