CS 367 Tutorial

24 September 2008

Week 8 (tutorial #6)

Carl Schultz

Material is taken from lecture notes (http://www.cs.auckland.ac.nz/compsci367s2c/lectures/index.html).
· learning task

· learn a target concept “f” (e.g. given the weather of a day, the function tells you if Aldo will play sport on that day)

· consider hypotheses in space “H”
· training examples are given to the learner – trainer chooses each example independently
· uses probability distribution “D” over all possible days – e.g. maybe some days are more likely to be chosen than other days (and maybe not)
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· Sample error

· fraction of examples in a particular sample of examples that it misclassifies

· e.g. out of the 12 blue dots above,  3 are misclassified

· sample error would be:  3 / 12 = 0.25
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· True error
· probability that, if I randomly pick an example (out of all possible examples) according to distribution D, it misclassifies it
· true error is what we want – but sample error is the best we can get
· so how good is sample error at estimating true error?
· problems with sample error

· bias

· variance
· bias (similar to accuracy)

· is the error between the “true value” f(x) and the average of a collection of outputs f ‘(x)  (each from a different hypothesis) from your learner 
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· archery analogy – bull’s eye is the “true value” we are aiming for and an arrow is the output from one learnt hypothesis produced by our learner
· both boards below have low bias because the error between the average of the arrows and the bull’s eye is low
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· whereas the following boards have high bias 
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· we’ll look at f ‘(x) closer – this is the average value from input x given by the different hypotheses that your learner might produce, depending on the training set
· f si is a hypothesis learnt on training set “si” (of size m)
· just take the average of all possible “fsi”
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· machine learning bias

· inductive bias (we’ve seen this before, e.g. candidate-elimination and ID3)

· this allows the learner to generalise beyond the training data

· …but also makes assumptions that might not hold 

· systematic error bias

· errors that deviate from the true value in a consistent way

· e.g. thermometer that reads 2 degrees higher than the real temperature

· e.g. reading clock that is running fast 

· very difficult to distinguish between systematic error and real patterns in the data

· often requires independent source of information (e.g. instrument calibration)

· straight-statistical bias

· states that as training set size gets smaller, error will increase

· statistical bias
· puts all the biases together into one formula (above)
· i.e. is the error between the “true value” f(x) and the average of a collection of hypotheses outputs f ‘(x) where the hypothesis are learnt from different training sets of size m from your learner 

· variance (similar to spread or precision)

· this is the average (squared) error between f ‘(x) (the mean value of different hypotheses, each learnt from one of the training sets s1, s2,…sl ) and the value from each hypothesis fsi
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· archery analogy – bull’s eye is the “true value” we are aiming for and an arrow is the output from one learnt hypothesis produced by our learner

· both boards below have low variance because the error between (a) the average of the arrows and (b) each particular arrow is low (i.e. all arrows are near the average)
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· whereas the following boards have high variance 
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· high variance=arrows are spread out
· low variance=arrows are near each other

· note: variance can be high while bias is low (low precision but high accuracy – remember bias is the average of the outputs from different hypotheses)
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· note: variance can be low while bias is high (high precision but low accuracy)
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· error (mean squared error) = bias2 + variance
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