CS 367 Tutorial

13 October 2008

Week 11 (tutorial #9)

Carl Schultz

Prolog

· a good debugging feature:

?- trace.
?- listing.

alive(_) :-

 animal(frog).

animal(frog).
?- alive(X).

 1 1 Call: alive(_383) ?

 2 2 Call: animal(frog) ?

 2 2 Exit: animal(frog) ?

 1 1 Exit: alive(_383) ?

true ?
· …and to turn it off use
?- notrace.

· to do arithmetic, use the “is” built-in relation

?- X is 5+3.

X = 8 ?
?- X is +(5,3).

X = 8 ?
?- Y is 5 + 3 * 11 - 44 / 8.

Y = 32.5 ?

· …note: you need to give a variable to hold the result, e.g. “X is…”

· negation in prolog

· real negation (X means that “X is false”

· prolog has a pseudo-negation that means “X is not provable”
· the keyword is “\+”

· E.g. using the above knowledge base:

?- \+ animal(frog).

no

?- \+ animal(book).

yes
· this means that “animal(frog)” is provable (i.e. is in the knowledge base or can be inferred using the knowledge base)

· “animal(book)” is not provable, so our “\+” operator returns true

· BUT you will have problems if you put unbound variables in the “not” operator
?- \+ animal(X).

no

· This can get really confusing if you have relations with unbound “not”s as goals. E.g. here’s a knowledge base:
raining_on(carl).
raining_on(jack).

wearing(jack, raincoat).

wet(X) :- \+ wearing(X,raincoat), raining_on(X).
· You would expect that the following would return X=carl:

?- wet(X).
no
· …but the “\+” fails as “wearing(X,raincoat)” can be satisfied (note: this can be fixed by swapping the order of “raining_on” and “\+ wearing”) – so be very careful with this
· for more discussion visit
http://www.cs.sfu.ca/CC/SW/Prolog/Notes/negation.html
Lists in prolog
· e.g. [carl, 3, bat, 5, 8, [1,2,3,4,5]]

· elements can be anything, including other lists

· empty list is: []
· non-empty list has two main parts: head (singleton) and tail
· formally, lists are structured data objects, with name “.” and arity 2, e.g.
?- [3] = .(3,[]).
yes
?- [3,x] = .(3, .(x,[])).

yes
· prolog uses special notation to specify items at the beginning of the list and then leave the rest of the list unspecified, “[head1,…, headn | Tail]”

?- [3,4,5] = [3|Tail].

Tail = [4,5] ?
?- [3,4,5] = [3|_].

yes

| ?- [3,book,zoo] = [3,book|_].

yes

| ?- [3,book,3,4,5,6,7] = [3,book|_].

yes

?- [3,book] = [3,book|_].

yes

| ?- [1,book,red] = [_,book|Tail].

Tail = [red] ?

?- [alpha,beta,5,6,7] = [_,_|[5,6,7]].

yes
· Lists are defined inductively
list([]).

list([I|L1]) :- list(L1).

· …that is, a list has a singleton item at the head (I) and a list for a tail (L1)

· E.g.:

.(3,[]).

… I=3 and L1=[]
.(3, .(x,[])).

… I=3 and L1=[x]
· because lists are defined inductively, so are operations
· member/2
- returns true if item is a member of the list
?- member(3,[x]).

no

| ?- member(3,[3,x]).

yes

· base case: check first item in list

member(Item, List) :- List = [Item | _].
· inductive step (if base case fails): check tail

member(Item, List) :-

List = [_ | Tail],

member(Item, Tail).
· we can be more concise in our code:

member(I, [I | _]).

member(I, [_ | T]) :- member(I, T).

· conc/3

- concatenate first list on to front of

 second list and return as third list

?- conc([3,x],[y], L).
L = [3,x,y] ?
· base case: first list is empty, then result equals second list
conc([], L2, L2).

· inductive step (if base case fails): keep plucking the head off of the first list and put it on the front of the result (eventually L1 will be empty and we hit the base case)
conc([I | L1], L2, [I|L3]) :- conc(L1, L2, L3).
· can use in all sorts of ways, e.g.:
?- conc([3],L2,[3,x,y,v,a]).

L2 = [x,y,v,a] ?
?- conc(L1, L2, [1,2,3]).

L1 = [],

L2 = [1,2,3] ? ;

L1 = [1],

L2 = [2,3] ? ;

L1 = [1,2],

L2 = [3] ? ;

L1 = [1,2,3],

L2 = [] ? ;

no

A* and IDA*
· Informed search means it uses additional information, not just the problem specification – one example is heuristics, i.e. guessing how far a node is from the nearest goal node

· Greedy best-first search expands node with lowest estimated cost (remember the heuristic is only a guess – no guarantees that the guess is correct)
[image: image1.png]

· A* search tries to avoid expanding paths that have already got a high cost
[image: image2.png]f(n) = g(n) + h(n)

[image: image3.png]g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through
n to goal

[image: image4.png]e oo
F > Cehasd (T feam
ST e 9o s

ETITEN 61574160 607113

· A* finds the best solution if heuristic h(n) is admissible
· admissible = heuristic is optimistic

· it means that the heuristic cost will always be less than or equal to the real cost
· to understand why the solution is always optimal, consider the following:

· A* has found a goal node

· by A*’s definition, it is the node that has the lowest path cost:

· g(n)+0 (from root to goal node – nb: h(goal)=0)

· …compared to any other open nodes:

· g(n)+h(n) (nodes that are ready to be visited)
· if this wasn’t the case, then A* would have visited some other open node instead (i.e. uses f(n))
· BUT what if some other lower cost path exists through one of the other open nodes that we haven’t explored?

· i.e. what if some other path exists through node m so that:

· g(n)+0 > g(m)+h*(m)
 h*(m) means real cost from m to goal
· this can never happen, because the heuristic is optimistic – i.e. the actual cost will be BIGGER than or equal to the estimated cost

· i.e.
h(m) (h*(m)

· …and the estimated cost is BIGGER than or equal to the real cost of the path we took
· g(n)+0 (g(m)+h(m) (g(m)+h*(m)
· big problem with A* is memory
· holds all expanded nodes in memory (this can be exponential!)
· so, use Iterative-deepening A*
· same relationship as iterative-deepening and breadth-first
· (recommended to review iterative deepening slides)

· Set an f(n) limit, run a depth-limited search (but limiting by cost using A* trick of f(n)=g(n)+h(n)), if fails then increase limit and try again:
· start with bound=f(root)
· run depth-first search – but backtrack when f(n) > bound
· if search can’t find anything, then start again with bound+=d
(where “d” is some increment)
· …
· Here’s a good summary
http://www.inf.uos.de/papers_html/ai_94/node2.html

