
Neural Networks

Computer Science 367
Patricia J Riddle

Some History of Neural Networks
•  McCulloch and Pitts [1943]: Model of artificial

neurons

•  Hebb [1949]: Simple updating rule

•  Minsky and Edmonds [1951]: First neural network
computer

•  Rosenblatt [1962]: Perceptrons (the model)

•  Minsky and Papert [1969]: Perceptrons (the book)

Revival of Neural Networks
Recently, there has been a resurgence of interest in
neural networks for the following reasons:

•  Faster digital computers to simulate larger networks

•  Interest in building massively parallel computers

•  New neural network architectures

•  Powerful Learning algorithms

Characteristics of Neural Networks

•  A large number of very simple neuronlike processing
elements

•  A large number of weighted connections between the
elements

•  Highly parallel, distributed control

•  An emphasis on learning internal representations
automatically

The 100-Time-Steps Requirement

•  Individual neurons are extremely slow devices
(compared to digital computers), operating in the
millisecond range.

•  Yet, humans can perform extremely complex tasks in
just a tenth of a second.

•  This means, humans do in about a hundred steps
what current computers cannot do in 10 million steps.

•  Look for massively parallel algorithms that require no
more than 100 time steps.

 Failure Tolerance
•  On the one hand, neurons are constantly

dying, and their firing patterns are irregular

•  On the other hand, components in digital
computers must operate perfectly.

•  With current technology, it is:
–  Easier to build a billion-component IC in which

95% of the components work correctly.
– More difficult to build a million-component IC that

functions perfectly.

Fuzziness

•  People seem to be able to do better than
computers in fuzzy situations.

•  We have very large memories of visual,
auditory, and problem-solving episodes.

•  Key operation in solving new problems is
finding closest matches to old situations.

Hopfield Networks
Theory of memory
•  Hopfield introduced this type of neural network as a

theory of memory.

Distributed representation
•  A memory is stored as a pattern of activation across

a set of processing elements.
•  Furthermore, memories can be superimposed on one

another; different memories are represented by
different patterns over the same set of processing
elements.

Hopfiled Networks (cont’d)
Distributed, asynchronous control
•  Each processing element makes decisions based only on its

own local situation. All the local actions add up to a global
solution.

Content-addressable memory
•  A number of patterns can be stored in a network. To retrieve a

pattern, we need only specify a portion of it. The network
automatically finds the closest match.

Fault tolerance
•  If a few processing elements misbehave or fail completely, the

network will still function properly.

Technical Details of Hopfield Networks

•  Processing elements (units) are either in state
active (1) or passive (-1).

•  Units are connected to each other with
weighted, symmetric connections (recurrent
network).

•  A positively (negatively) weighted connection
indicates that the two units tend to activate
(deactivate) each other.

Parallel Relaxation in Hopfield Networks

•  A random unit is chosen.

•  If any of its neighbors are active, the unit computes
the sum of the weights on the connections to those
active neighbors.

•  If the sum is positive, the unit becomes active;
otherwise it becomes inactive.

•  The process (parallel relaxation) is repeated until the
network reaches a stable state.

Example of a Hopfield Network

Another Example

Stability
•  Given any set of weights and any initial state, parallel

relaxation eventually steers the network into a stable
state.

•  It will only stabilize if parallel relaxation is used
(asynchronous).

•  If a synchronous update is done then it will either
stabilize or oscillate between two (and only two) units.

Some Features of Hopfield Networks
•  The network can be used as a content-addressable memory by

setting the activities of the units to correspond to a partial
pattern. To retrieve the pattern, we need only supply a portion of
it.

•  Parallel relaxation is nothing more than search, albeit of a
different style. The stable states correspond to local minima in
the search space.

•  The network corrects errors: if the initial state contains
inconsistencies, the network will settle into the solution that
violates the fewest constraints offered by the inputs.

Perceptrons
•  This type of network was invented by Rosenblatt [1962].

•  A perceptron models a neuron by taking a weighted sum of its inputs
and sending the output 1 if the sum is greater than or equal to some
adjustable threshold value; otherwise it sends 0.

•  The connections in a perceptron, unlike in a Hopfield network, are
unidirectional (feedforward network).

•  Learning in perceptrons means adjusting the weights and the threshold.

•  A perceptron computes a binary function of its input.

•  Perceptrons can be combined to compute more complex functions.

A Perceptron

Activation Function
•  Input:

•  Output with explicit threshold:

•  Output with implicit threshold:

€

x = (x1,…,xn) x0 =1

€

g(x) = 1 if wixi ≥ t
i=1

n
∑

0 otherwise

€

g(x) = 1 if wixi ≥ 0i= 0

n
∑

0 otherwise

What Perceptrons Can Represent

•  Linearly Separable Function

•  Input:

•  Output:

•  Decision Surface:
€

(x1,x2)

€

g(x) = w0 + w1x1 + w2x2

€

g(x1,x2) = 0⇔ x2 = −
w1
w2

x1 −
w0

w2

Limitations of Perceptrons

•  If a decision surface does not exist, the
perceptron cannot learn the function.

•  An example is the XOR function:

Perceptron Learning Method

•  Start with randomly assigned weights.

•  For each example do:
–  Let o be the computed output
–  Let t be the expected (target) output.
–  Update the weights based on , o, and t.

•  Repeat the process (i.e., go through another
epoch) until all examples are correctly
predicted or the stopping criterion is reached.

€

x

€

g(x)

€

x

Updating Rule
•  The error is the difference between the expected output

and the computed output:
 err = t − o
•  If the error is positive (negative), o must be increased

(decreased).
•  Each input xi contributes wixi to the total input.
•  If xi is positive (negative), increasing wi will increase

(decrease) o.
•  The desired effect can be achieved with the following

rule (η is the learning rate):

€

wi ← wi +η ⋅ xi ⋅ err

Multilayer Feed-Forward Networks

•  Input units are connected to hidden units.

•  Hidden units are connected to other hidden
units.

•  . . .

•  Hidden units are connected to output units.

Example of a Two Layer Feed-Forward Network

The Idea of Back-Propagation Learning

•  Compute the output for a given input and compare it
with the expected output.

•  Assess the blame for an error and divide it among the
contributing weights.

•  Start with the second layer (hidden units to output
units) and then continue with the first layer (input
units to hidden units).

•  Repeat this for all examples and for as many epochs
as it takes for the network to converge.

Activation Function
•  Backpropagation requires the derivative of the

activation function g.
•  The sign function (used in Hopfield networks) and the

step function (used in Perceptrons) are not
differentiable.

•  Usually, backpropagation networks use the sigmoid
function:

Sign And Step Functions

Sigmoid Unit

Backpropagation Update Rules
(2nd Layer)

•  Let Erri be the error (ti − oi) at the output node.

•  Let ini be the weighted sum ∑jwj,iaj of inputs to unit i.

•  Let ∆i be the new error term Erri g′(ini).

•  Then the weights in the second layer are updated as
follows:

 wj,i ← wj,i + η · aj · ∆i

Backpropagation Update Rules
(1st Layer)

•  Let ∆j be the new error term for the first layer:

•  Then the weights in the first layer are updated
as follows:
€

Δ j = ′ g (in j) w j ,i
i
∑ Δ i

€

wk, j ← wk, j +η ⋅ ik ⋅ Δ j

Pros and Cons of Backpropagation

•  Cons
–  Backpropagation might get stuck in a local

minimum that does not solve the problem.
–  Even for simple problems like the XOR problem,

the speed of learning is slow.
•  Pros

–  Fortunately, Backpropagation does not get stuck
very often,

–  Backpropagation is inherently a parallel,
distributed algorithm.

Multilayer Networks and
Nonlinear Surfaces

