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Some History of Neural Networks 
•  McCulloch and Pitts [1943]: Model of artificial 

neurons 

•  Hebb [1949]: Simple updating rule 

•  Minsky and Edmonds [1951]: First neural network 
computer 

•  Rosenblatt [1962]: Perceptrons (the model) 

•  Minsky and Papert [1969]: Perceptrons (the book) 



Revival of Neural Networks 
Recently, there has been a resurgence of interest in 
neural networks for the following reasons: 

•  Faster digital computers to simulate larger networks 

•  Interest in building massively parallel computers 

•  New neural network architectures 

•  Powerful Learning algorithms 



Characteristics of Neural Networks 

•  A large number of very simple neuronlike processing 
elements 

•  A large number of weighted connections between the 
elements 

•  Highly parallel, distributed control 

•  An emphasis on learning internal representations 
automatically 



The 100-Time-Steps Requirement 

•  Individual neurons are extremely slow devices 
(compared to digital computers), operating in the 
millisecond range. 

•  Yet, humans can perform extremely complex tasks in 
just a tenth of a second. 

•  This means, humans do in about a hundred steps 
what current computers cannot do in 10 million steps. 

•  Look for massively parallel algorithms that require no 
more than 100 time steps. 



 Failure Tolerance 
•  On the one hand, neurons are constantly 

dying, and their firing patterns are irregular 

•  On the other hand, components in digital 
computers must operate perfectly. 

•  With current technology, it is: 
–  Easier to build a billion-component IC in which 

95% of the components work correctly. 
– More difficult to build a million-component IC that 

functions perfectly. 



Fuzziness 

•  People seem to be able to do better than 
computers in fuzzy situations. 

•  We have very large memories of visual, 
auditory, and problem-solving episodes. 

•  Key operation in solving new problems is 
finding closest matches to old situations. 



Hopfield Networks 
Theory of memory 
•  Hopfield introduced this type of neural network as a 

theory of memory. 

Distributed representation 
•  A memory is stored as a pattern of activation across 

a set of processing elements.   
•  Furthermore, memories can be superimposed on one 

another; different memories are represented by 
different patterns over the same set of processing 
elements. 



Hopfiled Networks (cont’d) 
Distributed, asynchronous control 
•  Each processing element makes decisions based only on its 

own local situation.  All the local actions add up to a global 
solution. 

Content-addressable memory 
•  A number of patterns can be stored in a network.  To retrieve a 

pattern, we need only specify a portion of it.  The network 
automatically finds the closest match. 

Fault tolerance 
•  If a few processing elements misbehave or fail completely, the 

network will still function properly. 



Technical Details of Hopfield Networks 

•  Processing elements (units) are either in state 
active (1) or passive (-1). 

•  Units are connected to each other with 
weighted, symmetric connections (recurrent 
network). 

•  A positively (negatively) weighted connection 
indicates that the two units tend to activate 
(deactivate) each other. 



Parallel Relaxation in Hopfield Networks 

•  A random unit is chosen. 

•  If any of its neighbors are active, the unit computes 
the sum of the weights on the connections to those 
active neighbors. 

•  If the sum is positive, the unit becomes active; 
otherwise it becomes inactive. 

•  The process (parallel relaxation) is repeated until the 
network reaches a stable state. 



Example of a Hopfield Network 



Another Example 



Stability 
•  Given any set of weights and any initial state, parallel 

relaxation eventually steers the network into a stable 
state.

•  It will only stabilize if parallel relaxation is used 
(asynchronous).

•  If a synchronous update is done then it will either 
stabilize or oscillate between two (and only two) units.



Some Features of Hopfield Networks 
•  The network can be used as a content-addressable memory by 

setting the activities of the units to correspond to a partial 
pattern. To retrieve the pattern, we need only supply a portion of 
it. 

•  Parallel relaxation is nothing more than search, albeit of a 
different style. The stable states correspond to local minima in 
the search space. 

•  The network corrects errors: if the initial state contains 
inconsistencies, the network will settle into the solution that 
violates the fewest constraints offered by the inputs. 



Perceptrons 
•  This type of network was invented by Rosenblatt [1962]. 

•  A perceptron models a neuron by taking a weighted sum of its inputs 
and sending the output 1 if the sum is greater than or equal to some 
adjustable threshold value; otherwise it sends 0. 

•  The connections in a perceptron, unlike in a Hopfield network, are 
unidirectional (feedforward network). 

•  Learning in perceptrons means adjusting the weights and the threshold. 

•  A perceptron computes a binary function of its input. 

•  Perceptrons can be combined to compute more complex functions. 



A Perceptron 



Activation Function 
•  Input: 

•  Output with explicit threshold: 

•  Output with implicit threshold: 
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What Perceptrons Can Represent 

•  Linearly Separable Function 

•  Input: 

•  Output: 

•  Decision Surface: 
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Limitations of Perceptrons 

•  If a decision surface does not exist, the 
perceptron cannot learn the function. 

•  An example is the XOR function: 



Perceptron Learning Method 

•  Start with randomly assigned weights. 

•  For each example    do: 
–  Let o be the computed output 
–  Let t be the expected (target) output. 
–  Update the weights based on   , o, and t. 

•  Repeat the process (i.e., go through another 
epoch) until all examples are correctly 
predicted or the stopping criterion is reached. 
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Updating Rule 
•  The error is the difference between the expected output 

and the computed output: 
   err = t − o 
•  If the error is positive (negative), o must be increased 

(decreased). 
•  Each input xi contributes wixi to the total input. 
•  If xi is positive (negative), increasing wi will increase 

(decrease) o. 
•  The desired effect can be achieved with the following 

rule (η is the learning rate): 

€ 

wi ← wi +η ⋅ xi ⋅ err



Multilayer Feed-Forward Networks 

•  Input units are connected to hidden units. 

•  Hidden units are connected to other hidden 
units.

•  . . . 

•  Hidden units are connected to output units.



Example of a Two Layer Feed-Forward Network 



The Idea of Back-Propagation Learning 

•  Compute the output for a given input and compare it 
with the expected output. 

•  Assess the blame for an error and divide it among the 
contributing weights. 

•  Start with the second layer (hidden units to output 
units) and then continue with the first layer (input 
units to hidden units). 

•  Repeat this for all examples and for as many epochs 
as it takes for the network to converge. 



Activation Function 
•  Backpropagation requires the derivative of the 

activation function g. 
•  The sign function (used in Hopfield networks) and the 

step function (used in Perceptrons) are not 
differentiable. 

•  Usually, backpropagation networks use the sigmoid 
function: 



Sign And Step Functions 



Sigmoid Unit 



Backpropagation Update Rules 
(2nd Layer) 

•   Let Erri be the error (ti − oi) at the output node. 

•  Let ini be the weighted sum ∑jwj,iaj of inputs to unit i. 

•  Let ∆i be the new error term Erri g′(ini). 

•  Then the weights in the second layer are updated as 
follows: 

  wj,i ← wj,i + η · aj · ∆i 



Backpropagation Update Rules 
(1st Layer) 

•  Let ∆j be the new error term for the first layer: 

•  Then the weights in the first layer are updated 
as follows: 
€ 

Δ j = ′ g (in j ) w j ,i
i
∑ Δ i

€ 

wk, j ← wk, j +η ⋅ ik ⋅ Δ j



Pros and Cons of Backpropagation 

•  Cons
–  Backpropagation might get stuck in a local 

minimum that does not solve the problem. 
–  Even for simple problems like the XOR problem, 

the speed of learning is slow. 
•  Pros

–  Fortunately, Backpropagation does not get stuck 
very often, 

–  Backpropagation is inherently a parallel, 
distributed algorithm.



Multilayer Networks and 
Nonlinear Surfaces 


