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Some History of Neural Networks

* McCulloch and Pitts [1943]: Model of artificial
neurons

« Hebb [1949]. Simple updating rule

* Minsky and Edmonds [1951]: First neural network
computer

* Rosenblatt [1962]: Perceptrons (the model)

« Minsky and Papert [1969]: Perceptrons (the book)



Revival of Neural Networks

Recently, there has been a resurgence of interest in
neural networks for the following reasons:

Faster digital computers to simulate larger networks

Interest in building massively parallel computers

New neural network architectures

Powerful Learning algorithms



Characteristics of Neural Networks

A large number of very simple neuronlike processing
elements

A large number of weighted connections between the
elements

Highly parallel, distributed control

An emphasis on learning internal representations
automatically



The 100-Time-Steps Requirement

Individual neurons are extremely slow devices
(compared to digital computers), operating in the
millisecond range.

Yet, humans can perform extremely complex tasks in
just a tenth of a second.

This means, humans do in about a hundred steps
what current computers cannot do in 10 million steps.

Look for massively parallel algorithms that require no
more than 100 time steps.



Fallure Tolerance

* On the one hand, neurons are constantly
dying, and their firing patterns are irregular

* On the other hand, components in digital
computers must operate perfectly.

* With current technology, it is:

— Easier to build a billion-component IC in which
95% of the components work correctly.

— More difficult to build a million-component IC that
functions perfectly.



Fuzziness

* People seem to be able to do better than
computers in fuzzy situations.

« We have very large memories of visual,
auditory, and problem-solving episodes.

« Key operation in solving new problems is
finding closest matches to old situations.



Hopfield Networks

Theory of memory
« Hopfield introduced this type of neural network as a

theory of memory.

Distributed representation

A memory is stored as a pattern of activation across
a set of processing elements.

Furthermore, memories can be superimposed on one
another; different memories are represented by
different patterns over the same set of processing
elements.



Hopfiled Networks (cont'd)

Distributed, asynchronous control

« [Each processing element makes decisions based only on its
own local situation. All the local actions add up to a global

solution.

Content-addressable memory

* A number of patterns can be stored in a network. To retrieve a
pattern, we need only specify a portion of it. The network
automatically finds the closest match.

Fault tolerance

» |f a few processing elements misbehave or fail completely, the
network will still function properly.



Technical Details of Hopfield Networks

Processing elements (units) are either in state
active (1) or passive (-1).

Units are connected to each other with
weighted, symmetric connections (recurrent
network).

A positively (negatively) weighted connection
Indicates that the two units tend to activate
(deactivate) each other.



Parallel Relaxation in Hopfield Networks

A random unit is chosen.

If any of its neighbors are active, the unit computes
the sum of the weights on the connections to those
active neighbors.

If the sum is positive, the unit becomes active;
otherwise it becomes inactive.

The process (parallel relaxation) is repeated until the
network reaches a stable state.



Example of a Hopfield Network

Initial state Stable State




Another Example

Initial state Stable State




Stability

- Given any set of weights and any initial state, parallel
relaxation eventually steers the network into a stable
state.

- It will only stabilize if parallel relaxation is used
(asynchronous).

- If a synchronous update is done then it will either
stabilize or oscillate between two (and only two) units.



Some Features of Hopfield Networks

- The network can be used as a content-addressable memory by
setting the activities of the units to correspond to a partial
pattern. To retrieve the pattern, we need only supply a portion of
it.

- Parallel relaxation is nothing more than search, albeit of a
different style. The stable states correspond to local minima in
the search space.

« The network corrects errors: if the initial state contains
inconsistencies, the network will settle into the solution that
violates the fewest constraints offered by the inputs.



Perceptrons

This type of network was invented by Rosenblatt [1962].

A perceptron models a neuron by taking a weighted sum of its inputs
and sending the output 1 if the sum is greater than or equal to some
adjustable threshold value; otherwise it sends 0.

The connections in a perceptron, unlike in a Hopfield network, are
unidirectional (feedforward network).

Learning in perceptrons means adjusting the weights and the threshold.
A perceptron computes a binary function of its input.

Perceptrons can be combined to compute more complex functions.



A Perceptron
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FIGURE 4.2
A perceptron.



Activation Function

* Input: X=(X;,e.0X,)

X, =1

* Output with explicit threshold:

g(x) =

| if E’ilwixi >t

k 0 otherwise

* Qutput with implicit threshold:

g(x) =

rl if Elowixi =0

\O otherwise



What Perceptrons Can Represent

Linearly Separable Function

Input:

Output: g(x)=w,+ wx, + w,x,

Decision Surface:

(x;,,X,)

g(x,x,)=0<x,=-
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Limitations of Perceptrons

* |f a decision surface does not exist, the
perceptron cannot learn the function.

« An exampleist

ne XOR function:




Perceptron Learning Method

- Start with randomly assigned weights.

 For each example x do:
— Let o be the computed output g(x)
— Let tbe the expected (target) output.
— Update the weights based on X, o, and t.

* Repeat the process (i.e., go through another
epoch) until all examples are correctly
predicted or the stopping criterion is reached.



Updating Rule

- The error is the difference between the expected output

and the computed output:
err=t-o

If the error is positive (negative), o must be increased
(decreased).

Each input x; contributes w.x;to the total input.

If x;is positive (negative), increasing w; will increase
(decrease) o.

The desired effect can be achieved with the following
rule (n is the learning rate):

W. <= W, +N" X, err



Multilayer Feed-Forward Networks
* Input units are connected to hidden units.

 Hidden units are connected to other hidden
units.

- Hidden units are connected to output units.






he ldea of Back-Propagation Learning

- Compute the output for a given input and compare it

with the expected output.

+ Assess the blame for an error and divide it among the

contributing weights.

- Start with the second layer (hidden units to output

units) and then continue with the first layer (input
units to hidden units).

Repeat this for all examples and for as many epochs
as it takes for the network to converge.



Activation Function

Backpropagation requires the derivative of the
activation function g.

+ The sign function (used in Hopfield networks) and the
step function (used in Perceptrons) are not
differentiable.

Usually, backpropagation networks use the sigmoid
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Sign And Step Functions
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Sigmoid Unit
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Backpropagation Update Rules
(2"d Layer)

Let Err;be the error (1, — 0,) at the output node.

* Let in;be the weighted sum »w; ;a, of inputs to unit i.

Let A; be the new error term Err; g'(in,).

- Then the weights in the second layer are updated as
follows:



Backpropagation Update Rules
(1st Layer)

* Let A, be the new error term for the first layer:

A, =glin j)z WA,

- Then the weights in the first layer are updated

as follows: .
Wii S Wi ¥1° lk'Aj



Pros and Cons of Backpropagation

« Cons

— Backpropagation might get stuck in a local
minimum that does not solve the problem.

— Even for simple problems like the XOR problem,
the speed of learning is slow.

* Pros

— Fortunately, Backpropagation does not get stuck
very often,

— Backpropagation is inherently a parallel,
distributed algorithm.



Multilayer Networks and
Nonlinear Surfaces
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