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Decision Tree Learning
•  Discrete valued target functions - Classification problems

•  Represented as sets of if-then rules to improve human 
readability

•  Used in many success stories

•  Classify instances by sorting them down the tree
–  Each internal node is a test on some attribute
–  Each branch is one possible value for that test
–  Each leaf specifies classification value
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Decision tree
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Learned Rules
•  Outlook=Sunny∧Humidity=High→PlayTennis=No

•  Outlook=Sunny∧Humidity=Normal→PlayTennis=Yes

•  Outlook=Overcast→PlayTennis=Yes

•  Outlook=Rain∧Wind=Strong→PlayTennis=No

•  Outlook=Rain∧Wind=Weak→PlayTennis=Yes
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When to use Decision Tree Learning
•  Instances are represented by attribute value pairs (can be 

real valued).
•  The target value has discrete output values (no need to be 

binary, some extensions even handle real valued targets).

•  Disjunctive descriptions may be required

•  The training data 
–  may contain errors - errors in classification and errors in attribute 

values
–  may contain missing attribute values
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Attribute Values

attributes Outlook Wind Class

Instance 1 rainy strong red

Instance 2 sunny normal red

Instance 3 sunny normal green

Instance 4 cloudy strong red

Instance 5 rainy normal green
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ID3 Algorithm
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What Attribute is the Best 
Classifier?

•  Entropy (from information theory)
– Measures the impurity of an arbitrary collection 

of examples
•  Entropy(S)≡-p⊕log2p⊕-plog2p 

–  for a boolean classification where p⊕ is the 
proportion of positive examples in S and p is 
the proportion of negative examples in S.

–  In all calculations involving entropy we define 
0log0 to be 0
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Entropy

•  Entropy(9+,5-)=-(9/14)log2(9/14)-(5/14)log2(5/14)=.94
–  If all members of S are in the same class Entropy(S)=0
–  If there is an equal number of positive and negative 

instances in S then Entropy(S)=1

•  Entropy specifies the minimum number of bits of 
information needed to encode the classification of 
an arbitrary member of S
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Information Theory

•  A fair coin has an entropy of one bit.

•  However, if the coin is not fair, then the uncertainty 
is lower (if asked to bet on the next outcome, we 
would bet preferentially on the most frequent 
result), and thus the Shannon entropy is lower. 

•  A long string of repeating characters has an 
entropy rate of 0, since every character is 
predictable. 
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Information Theory History
•  During World War II, Claude Shannon developed 

a model of the communication process using the 
earlier work of Nyquist and Hartley.  

•  Shannon thought that the fundamental 
problem of communication is that of 
reproducing at one point either exactly or 
approximately a message selected at another 
point.  
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The Gist of Information Theory
•  The significant aspect is that the actual message is one selected 

from a set of possible messages. 

•  Using this engineering perspective, the communication process 
may be understood as a source communicating to a destination.  

•  The source provides its message to a transmitter through a 
perfect connection.  

•  The transmitter communicates through a channel to the 
receiver, which receives the message and gives it in a lossless 
manner to the destination. 
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Importance of Noise

•  One of the key additions that Shannon made 
to the earlier work of Nyquist and Hartley was 
the formal integration of noise into the 
communication model.  

•  Noise is introduced into the channel between 
the transmitter and the receiver and acts to 
changes messages so that what is received 
differs from what is transmitted. 
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Shannon’s Channel Model
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Coding
•  Coding takes place at the transmitter not at the source of the 

message  

•  The coded form of the message is what leaves the transmitting 
process and moves to the receiving process.  

•  It is represented in some form that can be transmitted by the 
medium supporting the channel.  

•  Transmitting data inherently requires that a change of medium 
take place 

•  When a signal moves from one medium to another, it must be 
physically represented somewhat differently, making an encoder 
necessary. 
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How to Code
•  Given a source producing symbols at a rate consistent with a 

set of probabilities governing their frequency of occurrence, 
Shannon asks ``how much information is `produced' by such a 
process, or better, at what rate information is produced?"  

•  For Shannon, the amount of self-information that is contained in 
or associated with a message being transmitted, when the 
probability of its transmission is p, is the logarithm of the inverse 
of the probability, or I=log1/p  

•  The choice of a logarithmic base corresponds to the choice of a 
unit for measuring information.  

•  If the base 2 is used the resulting units may be called binary 
digits, or more briefly bits, a word suggested by J. W. Tukey.  
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Deriving Entropy
•  A device with two stable positions . . . can store one 

bit of information.  

•  N such devices can store N bits, since the total 
number of possible states is sN and log22N=N. 

•  The amount of information in the output of a process 
is proportional to the number of different values that 
the function might return.  

•  Given n different output values, the amount of 
information (I) may be computed as I=log2n.  
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Restaurant Example
•  Ordering food at a restaurant might be modeled as a channel 

based process.  

•  The thoughts concerning food preference might be seen as the 
source, the vocalized order comes from the transmitting mouth, 
the waiter's ear is the receiver, and the chef is the destination.  

•  For example, use of this model may suggest that noise effecting 
the channel might be examined.  

•  Using care in the choice of codes (names for food) might help 
decrease the error rate in recording customer orders. 

•  Also things ordered more often should have shorter names 
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English example
•  People have a tendency to talk, and presumably think, at the 

basic level of categorization  
–  to draw the boundary around "chairs", rather than around the more 

specific category "recliner", or the more general category 
"furniture". 

•  People are more likely to say "You can sit in that chair" than 
"You can sit in that recliner" or "You can sit in that furniture". 

•  And it is no coincidence that the word for "chair" contains fewer 
syllables than either "recliner" or "furniture”. 
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In Summary
•  Basic-level categories, in general, tend to have short names; and 

nouns with short names tend to refer to basic-level categories. 

•  Not a perfect rule, of course, but a definite tendency. 

•  Frequent use goes along with short words; short words go along with 
frequent use. 

•  Or as Douglas Hofstadter put it, there's a reason why the English 
language uses "the" to mean "the" and "antidisestablishmentarianism" 
to mean "antidisestablishmentarianism" instead of 
antidisestablishmentarianism other way around. 
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What does this have to do with 
ML

•  Machine Learning is the same as compression

•  Now you just have to transmit the tree and the 
mistakes or errors

•  A lot of compression algorithms are machine 
learning algorithms and vice versa

•  Information Theory is the basis of them both
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General Entropy Formula

•  Generally,

– For example if there are 4 classes and the set is 
split evenly, 2 bits will be needed to encode the 
classification of an arbitrary member of S. 

–  If it is split less evenly an average message 
length of less then 2 can be used.

€ 

Entropy(S) ≡ −pi log2 pi
i=1

c

∑
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Entropy Function
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Information Gain

–  Where Values(A) is the set of possible values for the 
attribute A and Sv is the subset of S for which attribute 
A has value v.

•  Information Gain is the expected reduction in 
entropy caused by knowing the value of attribute 
A.

€ 

Gain(S,A) ≡ Entropy(S) − | Sv |
| S |v∈Values(A )∑ Entropy(Sv )
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Information Gain Intuition

•  Information Gain is the information 
provided about the target function value, 
given the value of some other attribute A.

•  The value of Gain(S,A) is the number of 
bits saved when encoding the target value of 
an arbitrary member S, by knowing the 
value of A.
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Information Gain Example

•  Of our 14 examples suppose 6 positive and 
2 negative have Wind=Weak. 

•  Values(Wind)=Weak,Strong

S=[9+,5-]
Sweak←[6+,2-]
Sstrong←[3+,3-]
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Information Gain Example II

The information gain by sorting the 14 examples by 
Wind is:

=0.940-(8/14)0.811-(6/14)1.00
=0.048

€ 

Gain(S,Wind) = Entropy(S) − | Sv |
| S |v∈{weak,strong}∑ Entropy(Sv )

€ 

Entropy(S) − (8 /14)Entropy(SWeak ) − (6 /14)Entropy(SStrong )
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Example Continued
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In more Detail - Humidity

•  S: [9+,5-]
•  E=-(9/14)log2(9/14)-(5/14)log2(5/14) = 0.940

•  S[3+,4-]
•  E=-(3/7)log2(3/7)-(4/7)log2(4/7) = 0.985

•  S[6+,1-]
•  E=-(6/7)log2(6/7)-(1/7)log2(1/7) = 0.592

•  GR=0.940-(7/14) x 0.985 - (7/14) x 0.592 = .151

€ 

Entropy(S) ≡ −pi log2 pi
i=1

c

∑

€ 

Gain(S,Wind) = Entropy(S) − | Sv |
| S |v∈{weak,strong}∑ Entropy(Sv )
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One More Time - Wind

•  S: [9+,5-]
•  E=-(9/14)log2(9/14)-(5/14)log2(5/14) = 0.940

•  S[6+,2-]
•  E=-(6/8)log2(6/8)-(2/8)log2(2/8) = 0.811

•  S[3+,3-]
•  E=-(3/6)log2(3/6)-(3/6)log2(3/6) = 1.00

•  GR=0.940-(8/14) x 0.811 - (6/14) x 1.00 = .048

€ 

Entropy(S) ≡ −pi log2 pi
i=1

c

∑

€ 

Gain(S,Wind) = Entropy(S) − | Sv |
| S |v∈{weak,strong}∑ Entropy(Sv )
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Decision Tree Example

•  ID3 uses Information Gain to select the best 
attribute at each step in growing the tree.

•  Gain(S,Outlook)=0.246
•  Gain(S,Humidity)=0.151
•  Gain(S,Wind)=0.048
•  Gain(S,Temperature)=0.029
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Partially Grown Tree
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Final Tree
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Searching in Decision Trees

•  ID3 can be seen as searching the space of 
possible decision trees:
– Simple to complex hill-climbing search
– Complete hypothesis space of finite discrete-

valued functions
–  ID3 maintains only a single current hypothesis
– Greedy Search (no backtracking)
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Searching II
•  Can’t tell how many alternative decision trees are 

consistent with the available training data

•  Can’t pose queries for new instances that optimally resolve 
the competing hypothesis

•  Pure ID3 performs no backtracking - can converge to local 
optimum - greedy search

•  ID3 not incremental - less sensitive to errors in individual 
training instances - easily extended to handle noisy data
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ID3 Hypothesis Space
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Inductive Bias in Decision Tree Learning

•  Much harder to define because of heuristic 
search
– Shorter trees are preferred over long ones.
– Trees that place high information gain 

attributes close to the root are preferred over 
those that do not.
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Restriction Biases and Preference Biases

•  ID3 incompletely searches a complete hypothesis space 
from simple to complex hypothesis.  Its bias is solely a 
consequence of the ordering of hypothesis searched.  Its 
hypothesis space introduces no additional bias - preference 
or search bias.

•  Candidate-Elimination completely searches an incomplete 
hypothesis space.  Its bias is solely a consequence of the 
expressive power of its hypothesis representation.  Its 
search strategy introduces no additional bias - restriction 
or language bias.
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What is the Best Bias?

•  A preference bias is more desirable

•  First learner 
–  restriction bias (linear function), 
–  preference bias (LMS algorithm for parameter 

tuning)
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Occam’s razor

•  Prefer the simplest hypothesis that fits the data.
•  Why?

•  Fewer short hypothesis then long ones - it is less 
likely that one will find a short hypothesis that 
coincidently fits the training data

•  This is really rubbish!!!! 
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Occam’s razor is Cut
•  Prefer decision trees containing exactly 17 leaf nodes with 

11 nonleaf nodes, that use the decision attribute A1 at the 
root and test attributes A2 through A11, in numerical 
order.  

•  There are relatively few such trees and we might argue (by 
the same reasoning above) that our a priori chance of 
finding one consistent with an arbitrary set of data is 
therefore small.

•  Another problem - based on internal learner’s 
representation
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Different Representations

outlook humidity wind temp
rainy high normal low

Outlook & 
humidity

Wind & temp

Rainy-high Normal-low
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Overfitting Definition

•  Given a hypothesis space H, a hypothesis h∈H is 
said to overfit the training data if there exists some 
alternative hypothesis h´∈H, such that h has a 
smaller error than h´ over the training examples, 
but h´ has a smaller error than h over the entire 
distribution of instances.

•  Pretty useless definition - not causal
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What Increases Overfitting

•  Noise (errors) in the data, 

•  Number of training instances too small
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Overfitting in Decision Trees
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Approaches to Overfitting

•  Stop growing tree earlier
•  Post-prune the tree
•  Separate set of examples - 

–  training and validation set approach - even if the 
training set is mislead by random errors the validation 
set is unlikely to exhibit the same random fluctuations - 
2/3 training, 1/3 validation

•  Statistical test
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Reduced Error Pruning

•  Consider each node for pruning

•  Pruning = removing the subtree at that node, make 
it a leaf and assign the most common class at that 
node

•  A node is removed if the resulting tree performs 
no worse then the original on the validation set - 
removes coincidences and errors
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Reduced Error Pruning II

•  Nodes are removed iteratively choosing the node 
whose removal most increases the decision tree 
accuracy on the graph.

•  Pruning continues until further pruning is harmful.

•  Uses training, validation & test sets 
–  effective approach if a large amount of data is available
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Impact of Reduced Error Pruning
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Rule Post Pruning

1.  Infer decision tree from training set

2.  Convert tree to rules - one rule per branch

3.  Prune each rule by removing preconditions that 
result in improved estimated accuracy

4.  Sort the pruned rules by their estimated accuracy 
and consider them in this sequence when 
classifying unseen instances
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Improved Estimated Accuracy
1.  Calculate the rule accuracy over training data

2.  Calculate the standard deviation assuming a binomial distribution

3.  For a given confidence interval, lower bound estimate is taken as 
measure of rule performance

•  For large data sets the estimated accuracy is very 
close to the observed whereas it grows further away 
as the data set size decreases

•  Not statistically valid, but found useful in practice
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Why Convert to Rules?

•  Allows distinguishing among different 
contexts in which a node might be used

•  Removes distinction between attribute tests 
near the root versus leafs 
–  no messy bookkeeping

•  Easier for people to understand
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Tree With Redundancies
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Continuous Valued Attributes?
•  Dynamically creating new discrete valued attributes Ac 

that is true if A < c
1.  Sort examples according to the continuous attribute value
2.  Identify adjacent examples that differ in their target 

classifications
3.  Generate candidate threshold midway between these points
4.  Calculate the information gain of each candidate and pick best
5.  Dynamically created boolean attributes to compete with others 

to appear in tree

•  The value of c that maximizes information gain must be 
one of these points
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Example

•  (48+60)/2 = 54
•  (80+90)/2 = 85
•  Temperature>54, Temperature>85

Temperature 40 48 60 72 80 90
PlayTennis No No Yes Yes Yes No
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Other Measures for Picking 
Attributes

•  Information Gain has natural bias towards 
attributes with many values over ones with 
few
– For instance Date attribute has highest 

information gain

•  Use Gain Ratio
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Gain Ratio
•  Entropy of S with respect to the values of A

€ 

SplitInfo(S,A) ≡ − | Si |
| S |i=1

c

∑ log2
| Si |
| S |

€ 

GainRatio(S,A) ≡ Gain(S,A)
SplitInfo(S,A)
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Gain Ratio Intuition

•  If attribute A splits the examples each into 
separate unique values (Date), SplitInfo = log2n

•  If attribute B splits the examples in half, 
SpiltInfo=1

•  Then if attributes A and B have the same Gain 
then B will clearly score higher
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Problems with Gain Ratio

•  If |Si| ≈|S|, then GainRatio is undefined or 
very large

•  To avoid selecting attributes on this basis
1.  Calculate Gain of each attribute
2.  Calculate GainRatio only on attributes with 

above average Gain
3.  Choose best GainRatio
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Other Evaluation Functions

•  Many other evaluation functions

•  Distance metric Lopez de Mantaras, 1991
– Distance between our partition and the perfect 

partition
– Not biased by number of values for an attribute
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Missing Attribute Values in 
Training Examples

•  Blood-Test_Result
1.  Standard methodology from Statistics is to throw 

away data
2.  Assign missing value to the most common value at 

node n
3.  Alternatively, assign missing value to the most 

common value at node n for examples with the same 
target value

4.  Assign probability to each possible value, estimated 
by frequencies at node n
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Missing Attribute II

•  Latter tack, can be subdivided again later in 
the tree

•  Same approach can be used to classify 
examples
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Attributes with Differing Costs

•  Temperature, BiopsyResult, Pulse, 
BloodTestResults

•  Prefer decision trees that use low-cost attributes 
where possible
–  Divide Gain by the cost of the attribute
–  Do not guarantee optimal cost-senstive decision tree, 

but bias the search in favor of low cost attributes
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Differing Costs II

•  Robot domain -

•  Medical Domain

– Where w∈{0,1} is a constant that determines 
the relative important of cost versus 
information gain

€ 

Gain2(S,A)
Cost(A)

€ 

2Gain(S,A ) −1
(Cost(A) +1)w
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Summary
•  Decision Trees are practical for discrete-valued functions, 

grows tree from root down, selecting next best attribute at 
each new node added to tree.

•  ID3 searches complete hypothesis space.  It can represent 
any discrete-valued function defined over discrete values 
instances, therefore it avoids the problem of the target 
function not being in the hypothesis space.

•  Inductive Bias implicit in ID3 is preference for smaller 
trees, only grows as large as needed to classify training 
examples.
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Summary continued

•  Overfitting data is an important issue. 

•  Very large variety of extensions: post-pruning, 
handling real-valued attributes, accommodating 
missing attribute values, incrementally refining 
decision trees, other attribute selection measures, 
considering costs associated with instance 
attributes (or target values).


