
Informed search algorithms

Russell & Norvig
Section 3.5

2nd Term 2014 Informed Search - Lecture 1 2

Outline

•  Review – Why look at search?

•  Informed search

•  Greedy search

What behaviour is “intelligent”?

•  Which suggests intelligent behaviour?
– Adding up a column of numbers
– Solving a crossword puzzle
– Calculating the weight of a cup of water
– Baking a cake
– Coming up with a new recipe
– Curing cancer
– Curing ham

2nd Term 2014 Informed Search - Lecture 1 3

What difference is there?

•  What seems to be true about intelligent
behaviour compared to not so intelligent?

2nd Term 2014 Informed Search - Lecture 1 4

What difference is there?

•  What seems to be true about intelligent
behaviour compared to not so intelligent?

•  It is often behaviour that solves a problem
that doesn’t have a “formula” for directly
coming to a solution.

2nd Term 2014 Informed Search - Lecture 1 5

What difference is there?

•  What seems to be true about intelligent
behaviour compared to not so intelligent?

•  It is often behaviour that solves a problem
that doesn’t have a “formula” for directly
coming to a solution.

•  In short, it involves a search for a solution!
2nd Term 2014 Informed Search - Lecture 1 6

What type of problems
involve search?

•  Solving puzzles
•  Playing chess
•  Designing new types of machines
•  Learning by watching a game
•  Proving theorems
•  Understanding a foreign accent
•  Planning a holiday
•  Diagnosing why your car won’t start
2nd Term 2014 Informed Search - Lecture 1 7

Not all search is equally
intelligent

•  While search is associated with intelligent
problem solving, search is not necessarily
enough!

•  If there is readily available information that
should help lead to a solution then
ignoring it and blindly searching for a
solution is not very intelligent.

2nd Term 2014 Informed Search - Lecture 1 8

Search & Intelligence

•  Different tasks often use different
variations of search.

•  These two weeks we will look mainly at
the task of solving puzzle-like problems.

•  Instead of blindly searching for solutions to
these problems we will talk about
techniques that use available information
to search for their solutions.

2nd Term 2014 Informed Search - Lecture 1 9

Informed (Heuristic) Search

•  “Heuristic” can mean many different
things, we will look at some of them.

•  The core idea is that it guides the problem
solver towards the solution
–  like someone crying out “hot”/”cold” in blind

man’s bluff.
•  Heuristics can be misleading.

2nd Term 2014 Informed Search - Lecture 1 10

What we will be doing

•  Our primary goal is to help you to
understand how you would write a system
that solved problems in a more or less
intelligent way.

•  Our secondary goal is to indicate how we
would do this in a declarative manner.

2nd Term 2014 Informed Search - Lecture 1 11

Developing a Problem Solver

•  We will begin with an uninformed problem
solver.

•  We start with a formal definition of what it
means for a sequence of states to be a
solution to a problem.
– Problems are specified by an initial state, a

goal state test, & a successor relation.
– We will incrementally transform this definition

into an “informed” problem solver.
2nd Term 2014 Informed Search - Lecture 1 12

Formal Definition of
“solution to problem”

2nd Term 2014 Informed Search - Lecture 1 13

solution(+problem(InitState, GoalTest), ?Solution)

Solution is a solution to a problem if and only if

 Solution is a non-empty sequence of states
 such that Solution’s first state is the InitState of the problem,
 the last state in Solution satisfies the GoalTest,
 & each state in Solution is a successor of its preceding state

Refinement of Definition

•  Not all formal definitions are equally useful
•  The previous definition is such an example
•  The problem is the “each state in Solution

is a neighbor of its preceding state” part
•  There isn’t an operation that directly

checks this.
•  We’re going to refine our definition so we

have a better idea of how we check this.
2nd Term 2014 Informed Search - Lecture 1 14

Formal Definition of
“solution to problem”

2nd Term 2014 Informed Search - Lecture 1 15

solution(+problem(InitState, GoalTest), ?Solution)

Solution is a solution to the problem if and only if
 either Solution only contains one state, S,

 and S is the InitState and it satisfies the GoalTest
 or Solution contains more than one state, e.g., [S, T | RestOfSolution],

 and T is a successor of S
 and [T | RestOfSolution] is a solution to problem(T, GoalTest)

This is an “inductive” definition of “solution”. Inductive definitions normally
makes it easier to see if the definition is correct.

Does it in this case?

Translation into Prolog
Solution is a solution to the problem if and only if
 either Solution only contains one state, S,

 and S is the InitState and it satisfied the GoalTest
 or Solution contains more than one state, e.g., [S | RestOfSolution],

 and T is a successor of S
 and RestOfSolution is a solution to problem(T, GoalTest)

solution(problem(InitState, GoalTest), [InitState] :- GoalTest(InitState)**.

solution(problem(InitState, GoalTest), [InitState, NextState | RestOfSolution]) :-

 successor(InitState, NextState),
 solution(problem(NextState, GoalTest), [NextState | RestOfSolution]).

** This is not exactly how you write this in Prolog, instead you write:

 “Goal =.. [GoalTest, InitState], call(Goal).”

2nd Term 2014 Informed Search - Lecture 1 16

Example

2nd Term 2014 Informed Search - Lecture 1 17

Domain Definition:
successor(losAngeles, sanFrancisco).
successor(losAngeles, sanDiego).
successor(sanFrancisco, portland).
successor(sanFrancisco, lasVegas).
successor(portland, seattle).

Goal Definition:
reachedHome(seattle).

| ?- solution(problem(losAngeles, reachedHome), Solution).

Solution = [losAngeles,sanFrancisco,portland,seattle] ?

Run through example

•  do example in emacs under SWI Prolog

2nd Term 2014 Informed Search - Lecture 1 18

Search Space

2nd Term 2014 Informed Search - Lecture 1 19

los
Angeles

san
Francisco

portland

seattle

successor(losAngeles, sanFrancisco).
successor(losAngeles, sanDiego).
successor(sanFrancisco, portland).
successor(sanFrancisco, lasVegas).

successor(portland, seattle).

What happens if clauses in
different order?

2nd Term 2014 Informed Search - Lecture 1 20

los
Angeles

san
Francisco

portland

seattle

successor(losAngeles, sanDiego).
successor(losAngeles, sanFrancisco).
successor(sanFrancisco, lasVegas).
successor(sanFrancisco, portland).

successor(portland, seattle).

san
Diego

las
Vegas

what have we done???

•  Seen that a relationship can be defined
such that it can be used by prolog to
generate instances of that relationship.

•  We saw:
–  how that defn can be turned into prolog
– what files we could create to run this

•  defn of relationship {simple search}
•  problem {example}
•  script to run it {script}

2nd Term 2014 Informed Search - Lecture 1 21

Tree Search

•  Keeps record of current path and choice
points along path (to visit if current path
abandoned).

•  [Can check for duplicate states along
current path, avoid loops.]

•  No global duplicate state checking.
•  When goal state is found, solution is

simply current path.

2nd Term 2014 Informed Search - Lecture 1 22

Naive solution implementation

•  Prolog has its own search procedure for
executing a program: depth-first search.

•  Our naive solution’s search strategy is
Prolog’s and has all the advantages &
disadvantages of depth-first search.

2nd Term 2014 Informed Search - Lecture 1 23

Status of Naive Tree Search

•  Advantages:
– Only needs to store current path

•  Linear memory costs

– Can use simpler logic (lower costs per node)
•  Disadvantages

– Non-optimal solution (depends on strategy)
– Repeats search for duplicate states
–  Incomplete (for infinite graphs)

2nd Term 2014 Informed Search - Lecture 1 24

Graph Search

•  Primarily, does a type of breadth-first
search.

•  Does global check for duplicate states.
•  Keeps whole search graph in memory.
•  When goal state is found, solution needs

to be extracted from search graph.

2nd Term 2014 Informed Search - Lecture 1 25

2nd Term 2014 Informed Search - Lecture 1 26

Graph search

Notes:
1. Fringe is the set of leaf nodes
2. Remove-Front is the search strategy
3. Avoids redundant searches from duplicate states

Graph version of solution

2nd Term 2014 Informed Search - Lecture 1 27

/* solution(+Problem, -Solution) */
solution(problem(InitialState, Goal), Solution) :-

 solution(Goal, [node(InitialState, nil)], [], Solution).

/* solution(+Goal, +Fringe, +Closed, -Solution) */
solution(Goal, [node(State, ParentState) | _], Closed, Solution) :-

 call(Goal, State),
 extractSolution(ParentState, Closed, [State], Solution).

solution(Goal, [node(State, Parent) | RestNodes], Closed, Solution) :-

 findall(NeighborNode,
 newNeighborNode(State, Closed, NeighborNode),
 NeighboringNodes),
 updateClosed(State, Closed, NewClosed),
 orderFringe(RestNodes, NeighboringNodes, NewFringe),
 solution(Goal, NewFringe, [node(State, Parent) | NewClosed], Solution).d

Status of Graph Search

•  Possible Advantages:
– Complete
– Optimal
– Only searches subspaces once

•  These advantages depend upon strategy
•  Disadvantages:

– Exponential memory costs
– More complex logic

2nd Term 2014 Informed Search - Lecture 1 28

2nd Term 2014 Informed Search - Lecture 1 29

Outline

•  Review

•  Best-first search

•  Greedy search

2nd Term 2014 Informed Search - Lecture 1 30

Search strategies

•  A search strategy is defined by the order
of node expansion

•  Let g(n) be the cost of n’s path from the
initial state.

•  Assume all edge costs are 1 then:
– Depth-first search strategy is pick node with

highest g-value.
– Breadth-first search strategy is pick node with

lowest g-value.

Best-first search strategy

•  Given a set of nodes on the fringe of a
search, which one is best to expand next?
– Based on what criteria?

2nd Term 2014 Informed Search - Lecture 1 31

Best-first search strategy

•  Given a set of nodes on the fringe of a
search, which one is best to expand next?
– Based on what criteria?

•  Criteria: expand best nodes first, i.e.,
those along an optimal solution path
– How do we do that?

2nd Term 2014 Informed Search - Lecture 1 32

Best-first search strategy

•  Given a set of nodes on the fringe of a
search, which one is best to expand next?

•  Different criteria:
– Time to find solution
– Quality of solution
– Combination of both

2nd Term 2014 Informed Search - Lecture 1 33

Best-first search strategy

•  How to order our selection of nodes to find
either a quick solution or a good one?

•  Need additional information to suggest
such nodes.

2nd Term 2014 Informed Search - Lecture 1 34

2nd Term 2014 Informed Search - Lecture 1 35

Informed Search Strategies

•  Informed Search Strategies use info
beyond the problem description

•  We will first look at functions that “guess”
distance from a state to nearest goal state.

•  Let h(n) be the “function” that guesses
how far n is from its nearest goal state.

2nd Term 2014 Informed Search - Lecture 1 36

Romania with step costs in km

2nd Term 2014 Informed Search - Lecture 1 37

Best-first search
•  Idea: use a function f(n) for each node

–  f(n) is an estimate of "desirability” of a node
–  Expand most desirable unexpanded node

•  Implementation:

 Order the nodes in fringe in decreasing order of
desirability (normally, higher f is then less desirable)

•  Uninformed Search:

–  Depth-first: f(n) = -g(n)
–  Breadth-first: f(n) = g(n)

Best-first informed
search strategies

•  Greedy Search

•  A* Search

•  Iterative Deepening A* (IDA*)

•  Weighted A* Search
2nd Term 2014 Informed Search - Lecture 1 38

2nd Term 2014 Informed Search - Lecture 1 39

Outline

•  Review

•  Best-first search

•  Greedy search

2nd Term 2014 Informed Search - Lecture 1 40

Greedy search

•  Evaluation function: f(n) = h(n)

•  h(n) = estimate of cost from n to goal
– e.g., hSLD(n) = straight-line distance from n to

Bucharest

•  Greedy search expands the node that

appears to be closest to goal

2nd Term 2014 Informed Search - Lecture 1 41

Greedy best-first search
example

2nd Term 2014 Informed Search - Lecture 1 42

Greedy best-first search
example

2nd Term 2014 Informed Search - Lecture 1 43

Greedy best-first search
example

2nd Term 2014 Informed Search - Lecture 1 44

Greedy best-first search
example

Why greedy search is attractive

•  With a decent enough heuristic, goes
almost directly to goal.

•  Best case: time and space are linear

•  So, why not always do greedy search?

2nd Term 2014 Informed Search - Lecture 1 45

2nd Term 2014 Informed Search - Lecture 1 46

Properties of greedy best-first
search

•  Complete? No, has same problem with
infinite graphs as depth-first search

•  Time? O(bm), but a good heuristic can give
dramatic improvement

•  Space? O(bm) -- keeps all nodes in
memory

•  Optimal? No

Greedy Search in Prolog

2nd Term 2014 Informed Search - Lecture 1

/* solution(+Heuristic, +Goal, +Fringe, +Closed, -Solution) */

solution(_Heuristic, Goal, [Node | _], Closed, Solution) :-
 node(Node, State, ParentState, _FValue),
 test(Goal, State),
 extractSolution(ParentState, Closed, [State], Solution).

solution(Heuristic, Goal, [Node | RestNodes], Closed, Solution) :-
 nodeState(Node, State),
 findall(NeighborNode,

 newNeighborNode(State, Heuristic,
 [Node | Closed], NeighborNode),
 NeighboringNodes),

 orderFringe(RestNodes, NeighboringNodes, NewFringe),
 solution(Heuristic, Goal, NewFringe, [Node | Closed], Solution).

47

Summary

•  Intelligent behaviour oft involves search.
•  Search strategy defines a traversal of the

search space, e.g., pick best f(n).
•  Informed search strategies use

information outside of problem description.
•  One such type of information is estimated

cost to nearest goal: h(n).
•  Greedy search: f(n) = h(n).
2nd Term 2014 Informed Search - Lecture 1 48

What does these measure?

•  Assume n is a node in the search space,
what do these measure?
–  f(n)

– g(n)

– h(n)

2nd Term 2014 Informed Search - Lecture 1 49

Food for thought

•  Do you use search in your life to solve
problems?

•  What sort of information do you use to
reduce the amount of search you do?

•  What do you aim for, cheapest solution,
quickest solution, or a combination?

2nd Term 2014 Informed Search - Lecture 1 50

Challenge
•  Can you create state space

representations for following domains:
– scheduling taxi service in Auckland
– playing chess
– getting a degree at UofA
–  enjoying your life

•  You need to represent states of the world,
actions that change states, problems, and
solutions.

2nd Term 2014 Informed Search - Lecture 1 51

Next Time

•  Look at:

– A* search
–  IDA*
– Heuristics

2nd Term 2014 Informed Search - Lecture 1 52

