
CompSci 366

Classical Planning

Outline

• Main Data Structures
• Defining Main Relationships
• Search Space Structure

Main Data Structures

• Problems are represented as:
problem(InitialSituation, GoalDescription)

where InitialSituations are lists of object-level
positive ground literals, and GoalDescription
are lists of literals (both object-level and meta-
level, both positive and negative).

Literals
• A positive literal is represented as simply a predicate,

e.g., clear(a), on(a, b).
• A ground literal has no variables, clear(A) vs clear(a).
• A negative literal is not(P) where P is a positive literal

and simply means that P is not true, e.g., not(clear(a)),
not(on(a, b)).

• There is only one meta-level predicate, neq(P, Q), and
simply means that P is not equal to Q, e.g., neq(A,
table) means that the variable A cannot be instantiated
to the constant table. All other domain predicates are
object-level predicates, e.g., clear(X).

Examples

• The following could represent a situation:
[on(a,b), on(b, table), clear(a), clear(c),on(c,table)],
it is a list of positive ground object-level literals.

• The following represents a goal description:
[on(a, X), on(Y, b), neq(X, Y), not(on(a, b))], it is a
list containing both meta- and object-level literals, both
positive and negative literals, and both ground and
non-ground literals.

Examples cont’d

• The following represents a problem:
problem(
[on(a,b),on(b,table),clear(a),clear(c),on(c,table)],
[on(a, X), on(Y, b), neq(X, Y), not(on(a, b))])

Operator Data Structures

• An operator schema is represented as:
op(Name, Params, Preconds, Effects), where
Params is a list of the parameters in the
Preconds and Effects and which instantiate the
schema, Preconds is a goal description that
states when the operator can be applied, and
Effects is an effects description that states how
application of the operator changes a situation.

Operator Data Structures cont’d

• Effects are a list of both positive and/or negative
object-level literals.

• Operator schema example:
op(move,[Block,FromLoc,ToLoc],
[on(Block,FromLoc),clear(Block), clear(ToLoc)],
[not(on(Block,FromLoc)),clear(FromLoc),
not(clear(ToLoc)), on(Block,ToLoc)])

Plan Data Structures

• A plan is a list of steps.
• A step is represented: step(OpName, Params),

where OpName is the name of the operator
(schema) to be executed at this point in the plan,
and Params is a list of parameter bindings.

• Example of a step: step(move, [a,b,c])
• Example of a two-step plan: [step(move,[a,b,c]),

step(move,[b,d,a])]

Outline

• Main Data Structures
• Defining Main Relationships

– solvedBy
• Search Space Structure

solvedBy(+Problem, ?Plan)

• We will now define what it means for a problem
to be solved by a plan.

• Example:
solvedBy(problem([on(a,b),on(b,table),clear(a)],

 [on(b,a)]),
 [step(move,[a,b,table]),
 step(move,[b,table,a])])

Plans and Planning cont’d

• How/when does a plan represent a solution to the
problem?

• Should we say that the plan
[step(move,[a,b,table]), step(move,[b,table,a])]
solves the problem
problem([on(a,b),on(b,table),clear(a)],[on(b,a)])
and if so, why?

Plans and Planning cont’d

• We can simulate applying the plan to the initial
situation and see if the resulting situation
satisfies the goal description.

[on(a,b),on(b,table),clear(a)]

move(a,b,table)

[on(a,table),on(b,table),clear(a), clear(b)]

move(b,table,a)

[on(a,table),on(b,a), clear(b)]

Plans and Planning cont’d

• Informally, we showed that the plan achieved
the goal situation from the initial situation by
showing:
– The plan can be applied to the initial situation.
– The resulting situation satisfies the goal description.

Plans and Planning cont’d

• The idea is to keep applying each step of the
plan to each new situation resulting from
applying the earlier sequence of steps to the
initial situation until the last step is applied and
the final situation satisfies our goal.

• This is called progression planning, we are
progressing the initial situation through the
plan.

Progression Planning

• STOPPED HERE ON TUESDAY

• We now have an informal idea of how we can
show the plan is indeed a solution.

• We will now formalise it!

Progression Planning cont’d

• Why is this a good idea?
• In the past there have been ad hoc planning

algorithms that turned out to be “wrong”.
• Want it to be “obvious” that our planning

algorithm is correct.

Progression Planning cont’d

• So, goal is to formally define what it means for
a plan to be a solution to a problem.

• Note: If formalised appropriately, we can
translate the formal definition into a Prolog
program that implements that definition.

• Hint: Try to make definitions recursive on plan
structure!

Progression Planning cont’d

• Base case: empty plan is a solution when
problem’s goal description is satisfied by
problem’s initial situation.

• solvedBy(problem(InitSit, GoalDesc), []) :-
satisfiedBy(GoalDesc, InitSit).

Progression Planning cont’d

• Inductive case: non-empty plan is a solution
when plan’s first step is applicable in problem’s
initial situation and rest of plan is a solution to
the new problem whose goal description is the
same as before and whose initial situation is the
one created by applying that step to the original
problem’s initial situation.

Progression Planning cont’d

• solvedBy(problem(I, G), [Step | Rest]) :-
applicableIn(Step, I),
applicationResult(Step, I, NextSit),
solvedBy(problem(NextSit, G), Rest).

Progression Planning cont’d

• We’ve defined solvedBy(Problem, Plan), but
have introduced:
– satisfiedBy(GoalDesc, Situation)
– applicableIn(Step, Situation)
– applicationResult(Step, Sit, NewSit)

• We now need to define these.
• Note: remember we are treating preconditions

as goal descriptions.

Progression Planning cont’d

• To define satisfiedBy(GoalDesc, Situation), we
need to define what can be in goal descriptions:
– Positive and negative (i.e., not/1) literals.
– Object-level and meta-level literals (i.e., neq/2).
– Literals can contain both constants and/or variables.

• Also need to define what’s in a situation.

Progression Planning cont’d

• There are four cases:
– Empty goal description.
– First goal is a negative literal.
– First goal is a meta-level literal.
– First goal is a positive object-level literal.

• Variables in literals are taken care of by Prolog
and treated as normal variables.

Progression Planning cont’d

• Base case: the empty goal description is
satisfied by all situations.

• satisfiedBy([], _).

Progression Planning cont’d

• Only positive object-level literals can be in a
situation description.

• From the definitions of what can be in goal and
in situation descriptions, we can define
satisfiedBy(GoalDesc, Situation) using case
analysis.

Progression Planning cont’d

• Negative literal (not(P)) case: is satisfied by a
situation when P is not satisfied by that
situation.

• satisfiedBy([not(P)| Rest], Sit) :- !,
not(satisfiedBy([P] , Sit),
satisfiedBy(Rest, Sit).

Progression Planning cont’d

• Meta-level literal (neq(P,Q)) case: is satisfied
when P is not equal to Q.

• satisfiedBy([neq(P, Q)|Rest], _) :- !,
not(P=Q),
satisfiedBy(Rest, Sit).

Progression Planning cont’d

• Positive object-level literal (P) case : is
satisfied by a situation S where P is represented
in S.

• satisfiedBy([P | Rest], Sit) :-
member(P, Sit),
satisfiedBy(Rest, Sit).

Progression Planning cont’d

• In defining satisfiedBy(Goal, Situation), we did
not need to introduce new predicates.

• So only need to define:
– applicableIn(Step, Situation)
– applicationResult(Step, Sit, NewSit)

Progression Planning cont’d

• Need to define when a step can be applied to a
situation.

• It can be applied when its operator’s
preconditions (with the current parameter
bindings) are satisfied by the situation.

• applicableIn(step(Op, Params), Sit) :-
preconds(Op, Params, Preconds),
satisfiedBy(Preconds, Sit).

Progression Planning cont’d

• Now only need to define:
– applicationResult(Step, Sit, NewSit)

• We will leave it to you to define this!

Recap

• By formally defining what relations we want to
hold between terms, we are able to “fairly”
transparently implement correct programs.

• Unfortunately, things as not trivial as they
might seem, as we will see shortly.

Outline

• Main Data Structures
• Defining Main Relationships
• Search Space Structure

Search Space Structure

• Defined planning algorithm, but how will it
work?

• Specifically, what will its search space of plans
look like?

• To see this, need to revisit the solvedBy
definition.

Search Space Structure cont’d

solvedBy(problem(InitSit, GoalDesc), []) :-
satisfiedBy(GoalDesc, InitSit).

solvedBy(problem(I, G), [Step | Rest]) :-
applicableIn(Step, I),
applicationResult(Step, I, NextSit),
solvedBy(problem(NextSit, G), Rest).

sB(prob(s0, g), [A0 | R0])

sB(prob(s1, g), [A1| R1]) sB(prob(s2, g), [A2| R2])

sB(prob(s3, g), [A3| R3]) sB(prob(s4, g), [A4| R4])

sB(prob(g’, g), [])

R4 = []

R1 = [A4]

R0 = [A1,A4]

sB(prob(s0, g), P)

P = [A0, A1, A4]

…

…

 Search
 Space
Structure

