
IDA* in Depth

Not in Norvig&Russell book
Source of Code can be found in

“Computational Intelligence”
By Poole, Mackworth, & Goebel

Outline

• What we need
• F-Bounded Search
• IDA* Search

Need Defined
﻿Domain definitions:

neighbors(State, Neighbors)
cost(State, Neighbor, ArcCost)

Problem definition:

is_goal(State)

Search definition:

h(State, HeuristicValue)

F-Bounded Search
• ﻿fbsearch(Frontier,FBound,Q,NextFBound,Path)
• “Frontier” is treated as a stack (we’re just doing f-

bounded depth-first search).
• “FBound” is the f-bound for this iteration.
• “Q” is the Frontier with just the initial state node,

used when starting a new iteration.
• “NextFBound” keeps track of the next iteration’s

FBound.
• “Path” is the path from the root to the head of

Frontier, and is used to return the solution.

F-Bound Calculations

• For the initial iteration, the f-bound is
simply the h-value of the intial state.

• For subsequent iterations, the new f-
bound is least f-value of the previous
iteration that exceeded its f-bound.

F-Bounded Search
• There are the following cases for an

f-bounded search, head of Frontier (node):
– node is a goal node: found solution.
– Frontier is empty, done with this iteration

• If there were some nodes whose f-values exceeded the
current f-bound, start next iteration.

• If there were no nodes whose f-values exceeded the
current f-bound, no solution exists.

– Otherwise: pop head(Frontier) &
• If f(node) =< Fbound: push neighbors of node onto

Frontier & continue
• Otherwise f(node) > Fbound: continue

F-Bounded Search
 Head of Frontier is a goal node: found solution

﻿fbsearch([node(State,Path,FBound)| _],
 FBound, _, _, [State | Path]) :-
% we found a solution
is_goal(State).

F-Bounded Search
 Frontier is empty: done with this iteration, start next iteration.

﻿﻿fbsearch([],_, Q, NextFBound, Solution) :-
% finished searching at this f-Bound
% and we actually expanded some nodes
% start searching at the next f-Bound
initialNextFBound(InitialNextFBound),
InitialNextFBound > NextFBound,
writeln(['Trying Depth bound: ',NextFBound]),
fbsearch(Q, NextFBound,

 Q, InitialNextFBound,Solution).

F-Bounded Search
 Frontier is empty: done with this iteration, start next

iteration.
• If NextFBound = InitialNextFBound

then either the least next F Bound was
10,000 or no nodes’s f-values
exceeded the current iteration’s F
Bound

F-Bounded Search
 If f(node) =< Fbound

fbsearch([node(State,Path,PathCost) | OldFrontier],
 FBound, Q, NextFBound, Solution) :-

h(State,HeuristicValue),
FValue is HeuristicValue + PathCost,
FBound >= FValue,
% f-Bound >= fValue
% we pop this node off of frontier
% we expand this node & push its children onto frontier
neighbours(State, Neighbors),
add_paths_fb(Neighbors, State, [State | Path],

 PathCost, OldFrontier, NewFrontier),
fbsearch(NewFrontier, FBound, Q,

 NextFBound, Solution).

F-Bounded Search
 If f(node) > Fbound

fbsearch([node(State,_,PathCost) | Frontier], FBound, Q,
 NextFBound, Solution) :-
h(State, HeuristicValue),
FValue is HeuristicValue + PathCost,
FValue > FBound,
% fValue > f-Bound
% we pop this node off of frontier
% don't expand this node
% see if its fValue will be the next f-Bound
LeastUpperBound is min(FValue, NextFBound),
fbsearch(Frontier, FBound, Q, LeastUpperBound,

 Solution).

IDA* Top Level

﻿idaStarSearch(State,Solution) :-
 h(State,HeuristicValue),
 FBound = HeuristicValue,
 writeln(['Trying f-bound: ', FBound]),
 initialNextFBound(NextFBound),
 fbsearch([node(State,[],0)],
 FBound,
 [node(State,[],0)],

 NextFBound,
 Solution).

add_paths_fb(Neighbors, State, Path, OldPathCost,
OldFrontier, NewFrontier)

﻿/* Neighbors are the states neighboring State, we turn each*/
/*neighboring state into a node, and push them onto the frontier.*/
/*Nodes contain the state, the path from the root to that state, */
/* and the cost of that path.*/
add_paths_fb([],_,_,_,Frontier,Frontier).
add_paths_fb([Neighbor | Rest], State, Path,

 OldPathCost, OldFrontier,
 [node(Neighbor,Path,NewPathCost)

 | NewFrontier]) :-
cost(State,Neighbor,ArcCost),
NewPathCost is OldPathCost + ArcCost,

add_paths_fb(Rest, State, Path, OldPathCost,
 OldFrontier, NewFrontier).

