| Solving problems by searching

Chapter 3



q Outline

|
Problem-solving agents

Problem types

Problem formulation
Example problems
Basic search algorithms

29 Sept 2008 CS 367 - Blind Search



q Levels of Abstraction

|
A system can be described at many different
levels of abstraction.

For example, a light switch can be described:
In terms of how to use it, e.qg., up is off , etc.

In terms of current flow, e.g., so many volts,
etc.

In terms of electron clouds and quantum
physics, e.g., the energy liberated by an electron
going to another orbital level, etc.
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q Computer Systems Descriptions

|
Computer systems can also be described at
many different levels of abstraction:

In terms of the electronic circuitry of the
computer.

In terms of the programs being run on the
computer.

In terms of the knowledge that explains the
behavior of the system.

29 Sept 2008 CS 367 - Blind Search



q The Knowledge Level Hypothesis

|
(Newell, 1982) “There exists a distinct
computer systems level, lying immediately
above the symbol level, which is
characterized by knowledge as the medium
and the principle of rationality as the law of
behavior.”

What does this mean and what does it have
to do with AI?
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q What It Means

I

Given a “rationally designed” artifact, we assume
that it has a goal and that, when it functions
properly, it acts in such a manner as to achieve
that goal.

We assume that the designer essentially mapped
the various environments the artifact could be in to
the actions the artifact should perform in order to
achieve the goal.

This can require the designer to be quite
knowledgeable about a lot of things.
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q What does this mean for AI?

I

We want to be able to tell the “artifact” what goals
it should achieve and it should figure out how to
achieve those goals given its current circumstance.

We want to move the knowledge from the
“designer” into the artifact so that it can do what
he can do.

One step in this direction is logic-based
programming (Prolog), another is the development
of domain-independent planners.
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q Transferring the Knowledge

I

What is involved in moving this knowledge?
How to use it: Reasoning/Planning.
How to represent it: Knowledge Representations.
How to acquire it: DataMining/Machine Learning.

We will be primarily concerned with how to
use and represent knowledge to solve our
problems.
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q Problem-Space Hypothesis

The fundamental organisational unit of all human
symbolic activity is the problem space. (Newell,
1980)

"The rational activity in which people engage to
solve a problem can be described in terms of:
(1) a set of states of knowledge,
(2) operators for changing one state into another,
(3) constraints on applying operators

and (4) control knowledge for deciding which operator to
apply next.”
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M Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state <— UPDATE-STATE( state, percept)

if seq is empty then do
goal < FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, goal)
seq < SEARCH( problem)

action < FIRST(seq)

seq <+ REST(seq)

return action
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q Example: Romania

I
On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest
Formulate goal:

be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities
Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
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q Example: Romania
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q Problem types

I
Deterministic, fully observable = single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable = sensorless problem (conformant
problem)

Agent may have no idea where it is; solution is a sequence
Nondeterministic and/or partially observable - contingency
problem

percepts provide new information about current state

often interleave search, execution

Unknown state space = exploration problem
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q Example: vacuum world

I
Single-state, start in #5.

Solution?

1

IR S N
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q Example: vacuum world

I
Single-state, start in #5.

Solution? [Right, Suck] =B | 2
Sensorless, start in 3 | =) 4
{1/2/3/4/'5/6/7/8} e'g'l ﬁ
Right goes to {2,4,6,8) 5 [ 5
Solution? B3R

7 | =) 8
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q Example: vacuum world

I
Sensorless, start in

{1/2/3/4/5/6/7/8} e.g., 1 ‘&
Right goes to {2,4,6,8} -
Solution? 3 [
[Right,Suck,Left, Suck] oK
Contingency 5 |=dd
Nondeterministic: Suck may
dirty a clean carpet 7 | =)
Partially observable: location, dir

Percept: [L, Clean], i.e., start in #5 or #7
Solution?
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q Example: vacuum world

I
Sensorless, start in

{1,2,34,56,7,8 eq., i
Right goes to {2,4,6,8)}
Solution? 3 | =)
[Right,Suck, Left,Suck] .
5 | =]
Contingency
Nondeterministic: Suck may 7 | =)
dirty a clean carpet

8

Partially observable: location, dirt at current location.

Percept: [L, Clean], i.e., start in #5 or #7
Solution? [Right, if dirt then Suck]
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q Single-state problem formulation
|

A problem is defined by four items:

initial state e.qg., "at Arad"

actions or successor function S(x) = set of action—state pairs
e.qg., S(Arad) = {<Arad 2> Zerind, Zerind>, ... }

goal test, can be
explicit, e.g., x = "at Bucharest"
implicit, e.g., Checkmate(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be > 0

A solution is a sequence of actions leading from the initial state to a
goal state
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q Selecting a state space

I
Real world is absurdly complex

- state space must be abstracted for problem solving
(Abstract) state = set of real states

(Abstract) action = complex combination of real actions

e.g., "Arad 2> Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

For guaranteed realizability, all real states "in Arad™ must
get to some real state "in Zerind"

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be "easier" than the original
problem
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q Vacuum world state space graph
|
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q Vacuum world state space graph
| R
(PRl =)
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states? integer dirt and robot location
actions? Left, Right, Suck

goal test? no dirt at all locations

path cost? 1 per action
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q Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

states?
actions?
goal test?
path cost?
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q Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

states? locations of tiles

actions? move blank left, right, up, down
goal test? = goal state (given)

path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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q Example: robotic assembly

| P

e % a
U

states?: real-valued coordinates of robot joint
angles parts of the object to be assembled

actions?: continuous motions of robot joints
goal test?: complete assembly
path cost?: time to execute
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Brainpower in a Box

Austin, TX
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q Tree search algorithms

Basic idea:

offline, simulated exploration of state space by
generating successors of already-explored states
(a.k.a.~expanding states)

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
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q Tree search example
I
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q Tree search example
I

e T )

29 Sept 2008 CS 367 - Blind Search

32



q Tree search example

< Amd
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Implementation: general tree search

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe «— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT( fringe)
if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
fringe «+— INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND( node, problem) returns a set of nodes

successors <— the empty set

for each action, result in SUCCESSOR-F'N[problem|(STATE[node]) do
$<—a new NODE
PARENT-NODE[s] < node; ACTION|[s| <— action, STATE[s] < result
PATH-COST[$] = PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] +— DEPTH[node] + 1
add s to successors

return successors

29 Sept 2008 CS 367 - Blind Search



q Implementation: states vs. nodes

A state is a (representation of) a physical configuration

A node is a data structure constituting part of a search tree
includes state, parent node, action, path cost g(x), depth

State 5

4

6

1

8

7

3

2

= stale

parent, action
A

Node depth = 6

g==6

The Expand function creates new nodes, filling in the
various fields and using the successorFn of the problem
to create the corresponding states.
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q Search strategies

A search strategy is defined by picking the order of node
expansion

Strategies are evaluated along the following dimensions:
completeness: does it always find a solution if one exists?
time complexity: number of nodes generated
space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of
b: maximum branching factor of the search tree

d: depth of the least-cost solution
m: maximum depth of the state space (may be «)
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M Uninformed search strategies

Jninformed search strategies use only the
information available in the problem
definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

[terative deepening search
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q Breadth-first search

|
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
>@
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q Breadth-first search

|
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
(4]
>(8) G
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q Breadth-first search

|
Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue, i.e., new successors go
at end
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q Breadth-first search

|
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
(4]
O G
>@© © O @
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q Properties of breadth-first search

I
Complete? Yes (if b is finite)

Time? 1+b+b2+b3+... +b7 + b(b?-1) = O(bd+1)
Space? O(b?+1) (keeps every node in memory)
Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than time)
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q Uniform-cost search

I
Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal
g is the optimum cost from init state to current state
Complete? Yes, if step cost > €

Time? # of nodes with g < cost of optimal solution,
O(b<eing(C*7 €)) where C" is the cost of the optimal solution

Space? # of nodes with g < cost of optimal solution,
O( bcei/ing( c*/ e))
Optimal? Yes — nodes expanded in increasing order of g(n)
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q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

20,
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q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
A

20 )
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q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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q Depth-first search
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q Depth-first search
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q Depth-first search
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q Depth-first search
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q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

&)

40
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q Depth-first search
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q Depth-first search

I
Expand deepest unexpanded node

Implementation:
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q Properties of depth-first search

I
Complete? No: fails in infinite-depth spaces, spaces
with loops

Modify to avoid repeated states along path
- complete in finite spaces

Time? O(b™): terrible if m (length of longest path
in search space) is much larger than d

but if solutions are dense, may be much faster than
breadth-first

Space? O(bm), i.e., linear space!
Optimal? No
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Depth-limited search

I
= depth-first search with depth limit /

i.e., nodes at depth /have no successors

Recursive implementation:

function DEPTH-LIMITED-SEARCH( problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred? + false
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result +— RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure
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[terative deepening search

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth< 0 to oo do
result < DEPTH-LIMITED-SEARCH( problem, depth)
if result # cutoff then return result
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q Iterative deepening search / =0

Limit=0 20 ®
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q Iterative deepening search / =1

Limit=1 2O ©
5) >(5) © >
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q Iterative deepening search / =2

e m m m
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q Iterative deepening search / =3

Limit=3 2O
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q Iterative deepening search

Number of nodes generated in a depth-limited search to
depth d with branching factor b:

Nojc =00 +b" + b2 + ... + b2 + b1 + b

Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

Nips = (d+1)b% + d b~ + (d-1)bA2 + ... + 3b92 +2bd-1 + 1bd

For b =10, d = 5,
Np =1+ 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
N;ps = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%
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q Properties of iterative

[ _deepening search

Complete? Yes

Time? (d+1)b° + d b* + (d-1)b° + ...

O(b°)
Space? O(bd)
Optimal? Yes, if step cost = 1
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q Summary of algorithms

Criterion | Breadth-  Uniform-  Depth-  Depth- lterative
First Cost First  Limited Deepening
Complete? Yes Yes No No Yes
Time O(b* 1Y) O®/Cy o™ O O(b?)
Space O(b*Y) oIy O@m) O®Bl)  O(bd)
Optimal? Yes Yes No No Yes
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q Repeated states

|
Failure to detect repeated states can turn a
linear problem into an exponential one!
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W Graph search

function GRAPH-SEARCH( problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node «+— REMOVE- FRONT( fringe)
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
if STATE[nO0de] is not in closed then
add STATE[node| to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)
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q Summary

I

Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

29 Sept 2008 CS 367 - Blind Search 68



