| Solving problems by searching

Chapter 3

q Outline

|
Problem-solving agents

Problem types

Problem formulation
Example problems
Basic search algorithms

29 Sept 2008 CS 367 - Blind Search

q Levels of Abstraction

|
A system can be described at many different
levels of abstraction.

For example, a light switch can be described:
In terms of how to use it, e.qg., up is off , etc.

In terms of current flow, e.g., so many volts,
etc.

In terms of electron clouds and quantum
physics, e.g., the energy liberated by an electron
going to another orbital level, etc.

29 Sept 2008 CS 367 - Blind Search 3

q Computer Systems Descriptions

|
Computer systems can also be described at
many different levels of abstraction:

In terms of the electronic circuitry of the
computer.

In terms of the programs being run on the
computer.

In terms of the knowledge that explains the
behavior of the system.

29 Sept 2008 CS 367 - Blind Search

q The Knowledge Level Hypothesis

|
(Newell, 1982) “There exists a distinct
computer systems level, lying immediately
above the symbol level, which is
characterized by knowledge as the medium
and the principle of rationality as the law of
behavior.”

What does this mean and what does it have
to do with AI?

29 Sept 2008 CS 367 - Blind Search

q What It Means

I

Given a “rationally designed” artifact, we assume
that it has a goal and that, when it functions
properly, it acts in such a manner as to achieve
that goal.

We assume that the designer essentially mapped
the various environments the artifact could be in to
the actions the artifact should perform in order to
achieve the goal.

This can require the designer to be quite
knowledgeable about a lot of things.

29 Sept 2008 CS 367 - Blind Search 6

q What does this mean for AI?

I

We want to be able to tell the “artifact” what goals
it should achieve and it should figure out how to
achieve those goals given its current circumstance.

We want to move the knowledge from the
“designer” into the artifact so that it can do what
he can do.

One step in this direction is logic-based
programming (Prolog), another is the development
of domain-independent planners.

29 Sept 2008 CS 367 - Blind Search

q Transferring the Knowledge

I

What is involved in moving this knowledge?
How to use it: Reasoning/Planning.
How to represent it: Knowledge Representations.
How to acquire it: DataMining/Machine Learning.

We will be primarily concerned with how to
use and represent knowledge to solve our
problems.

29 Sept 2008 CS 367 - Blind Search

q Problem-Space Hypothesis

The fundamental organisational unit of all human
symbolic activity is the problem space. (Newell,
1980)

"The rational activity in which people engage to
solve a problem can be described in terms of:
(1) a set of states of knowledge,
(2) operators for changing one state into another,
(3) constraints on applying operators

and (4) control knowledge for deciding which operator to
apply next.”

29 Sept 2008 CS 367 - Blind Search

M Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state <— UPDATE-STATE(state, percept)

if seq is empty then do
goal < FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, goal)
seq < SEARCH(problem)

action < FIRST(seq)

seq <+ REST(seq)

return action

29 Sept 2008 CS 367 - Blind Search

10

q Example: Romania

I
On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest
Formulate goal:

be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities
Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

29 Sept 2008 CS 367 - Blind Search

q Example: Romania

] Oradea
Neamt
- 7
M lasi
)
Sibiu o Fagams
20 M Vaslui
Timisoara Rimnicu Vilcea
ju]]
142
: : 211
Lt - Lugoj Pitesti
0 - s Hirsova
[IMehadia 101 . 3 rziceni
~ L, 30
. B - 138 Bucharest
obreta [- L . 90
Craiova Eforie
(] Giurgiu

29 Sept 2008 CS 367 - Blind Search 12

q Outline

|
Problem-solving agents

Problem types

Problem formulation
Example problems
Basic search algorithms

29 Sept 2008 CS 367 - Blind Search

13

q Problem types

I
Deterministic, fully observable = single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable = sensorless problem (conformant
problem)

Agent may have no idea where it is; solution is a sequence
Nondeterministic and/or partially observable - contingency
problem

percepts provide new information about current state

often interleave search, execution

Unknown state space = exploration problem

29 Sept 2008 CS 367 - Blind Search 14

q Example: vacuum world

I
Single-state, start in #5.

Solution?

1

IR S N

29 Sept 2008 CS 367 - Blind Search

Sk PR NS

q Example: vacuum world

I
Single-state, start in #5.

Solution? [Right, Suck] =B | 2
Sensorless, start in 3 | =) 4
{1/2/3/4/'5/6/7/8} e'g'l ﬁ
Right goes to {2,4,6,8) 5 [5
Solution? B3R

7 | =) 8

29 Sept 2008 CS 367 - Blind Search

A [#L) | A [BK

16

q Example: vacuum world

I
Sensorless, start in

{1/2/3/4/5/6/7/8} e.g., 1 ‘&
Right goes to {2,4,6,8} -
Solution? 3 [
[Right,Suck,Left, Suck] oK
Contingency 5 |=dd
Nondeterministic: Suck may
dirty a clean carpet 7 | =)
Partially observable: location, dir

Percept: [L, Clean], i.e., start in #5 or #7
Solution?

29 Sept 2008 CS 367 - Blind Search

SIS

17

q Example: vacuum world

I
Sensorless, start in

{1,2,34,56,7,8 eq., i
Right goes to {2,4,6,8)}
Solution? 3 | =)
[Right,Suck, Left,Suck] .
5 | =]
Contingency
Nondeterministic: Suck may 7 | =)
dirty a clean carpet

8

Partially observable: location, dirt at current location.

Percept: [L, Clean], i.e., start in #5 or #7
Solution? [Right, if dirt then Suck]

29 Sept 2008

CS 367 - Blind Search

A L) A [#L

18

q Outline

|
Problem-solving agents

Problem types
Problem formulation
Example problems
Basic search algorithms

29 Sept 2008 CS 367 - Blind Search

19

q Single-state problem formulation
|

A problem is defined by four items:

initial state e.qg., "at Arad"

actions or successor function S(x) = set of action—state pairs
e.qg., S(Arad) = {<Arad 2> Zerind, Zerind>, ... }

goal test, can be
explicit, e.g., x = "at Bucharest"
implicit, e.g., Checkmate(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be > 0

A solution is a sequence of actions leading from the initial state to a
goal state

29 Sept 2008 CS 367 - Blind Search 20

q Selecting a state space

I
Real world is absurdly complex

- state space must be abstracted for problem solving
(Abstract) state = set of real states

(Abstract) action = complex combination of real actions

e.g., "Arad 2> Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

For guaranteed realizability, all real states "in Arad™ must
get to some real state "in Zerind"

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be "easier" than the original
problem

29 Sept 2008 CS 367 - Blind Search

q Outline

|
Problem-solving agents

Problem types
Problem formulation
Example problems
Basic search algorithms

29 Sept 2008 CS 367 - Blind Search

22

q Vacuum world state space graph
|

K

LC;FQOM _: el il QR
e LT D U T [0

- -
=L LT =0
o OO
states? : :
actions?
goal test?

path cost?

29 Sept 2008 CS 367 - Blind Search

q Vacuum world state space graph
| R
(PRl =)
ELLTED @D

K

- : -
LCE,Q : E,QQR
O O

S S

states? integer dirt and robot location
actions? Left, Right, Suck

goal test? no dirt at all locations

path cost? 1 per action

29 Sept 2008 CS 367 - Blind Search

q Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

states?
actions?
goal test?
path cost?

29 Sept 2008 CS 367 - Blind Search

q Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

states? locations of tiles

actions? move blank left, right, up, down
goal test? = goal state (given)

path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

29 Sept 2008 CS 367 - Blind Search

26

q Example: robotic assembly

| P

e % a
U

states?: real-valued coordinates of robot joint
angles parts of the object to be assembled

actions?: continuous motions of robot joints
goal test?: complete assembly
path cost?: time to execute

29 Sept 2008 CS 367 - Blind Search

27

Computers & Common Sense:
1 Cyc

Brainpower in a Box

Austin, TX

29 Sept 2008 CS 367 - Blind Search 28

q Outline

|
Problem-solving agents

Problem types
Problem formulation
Example problems
Basic search algorithms

29 Sept 2008 CS 367 - Blind Search

29

q Tree search algorithms

Basic idea:

offline, simulated exploration of state space by
generating successors of already-explored states
(a.k.a.~expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

29 Sept 2008 CS 367 - Blind Search

30

q Tree search example
I

29 Sept 2008 CS 367 - Blind Search

31

q Tree search example
I

e T)

29 Sept 2008 CS 367 - Blind Search

32

q Tree search example

< Amd

29 Sept 2008 CS 367 - Blind Search

33

Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe «— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
fringe «+— INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors <— the empty set

for each action, result in SUCCESSOR-F'N[problem|(STATE[node]) do
$<—a new NODE
PARENT-NODE[s] < node; ACTION|[s| <— action, STATE[s] < result
PATH-COST[$] = PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] +— DEPTH[node] + 1
add s to successors

return successors

29 Sept 2008 CS 367 - Blind Search

q Implementation: states vs. nodes

A state is a (representation of) a physical configuration

A node is a data structure constituting part of a search tree
includes state, parent node, action, path cost g(x), depth

State 5

4

6

1

8

7

3

2

= stale

parent, action
A

Node depth = 6

g==6

The Expand function creates new nodes, filling in the
various fields and using the successorFn of the problem
to create the corresponding states.

29 Sept 2008

CS 367 - Blind Search 35

q Search strategies

A search strategy is defined by picking the order of node
expansion

Strategies are evaluated along the following dimensions:
completeness: does it always find a solution if one exists?
time complexity: number of nodes generated
space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of
b: maximum branching factor of the search tree

d: depth of the least-cost solution
m: maximum depth of the state space (may be «)

29 Sept 2008 CS 367 - Blind Search

36

M Uninformed search strategies

Jninformed search strategies use only the
information available in the problem
definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

[terative deepening search

29 Sept 2008 CS 367 - Blind Search

37

q Breadth-first search

|
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
>@

29 Sept 2008 CS 367 - Blind Search

38

q Breadth-first search

|
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
(4]
>(8) G

29 Sept 2008 CS 367 - Blind Search

39

q Breadth-first search

|
Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue, i.e., new successors go
at end

29 Sept 2008 LS 3b/ - BliNd Search

40

q Breadth-first search

|
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
(4]
O G
>@© © O @

29 Sept 2008 CS 367 - Blind Search

41

q Properties of breadth-first search

I
Complete? Yes (if b is finite)

Time? 1+b+b2+b3+... +b7 + b(b?-1) = O(bd+1)
Space? O(b?+1) (keeps every node in memory)
Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than time)

29 Sept 2008 CS 367 - Blind Search 42

q Uniform-cost search

I
Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal
g is the optimum cost from init state to current state
Complete? Yes, if step cost > €

Time? # of nodes with g < cost of optimal solution,
O(b<eing(C*7 €)) where C" is the cost of the optimal solution

Space? # of nodes with g < cost of optimal solution,
O(bcei/ing(c*/ e))
Optimal? Yes — nodes expanded in increasing order of g(n)

29 Sept 2008 CS 367 - Blind Search 43

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

20,

29 Sept 2008 CS 367 - Blind Search

44

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
A

20)

29 Sept 2008 CS 367 - Blind Search

45

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search

46

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search

47

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search

48

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search

49

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search

50

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search

51

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

&)

40

29 Sept 2008 CS 367 - Blind Search

52

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search

53

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search

54

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search

55

q Properties of depth-first search

I
Complete? No: fails in infinite-depth spaces, spaces
with loops

Modify to avoid repeated states along path
- complete in finite spaces

Time? O(b™): terrible if m (length of longest path
in search space) is much larger than d

but if solutions are dense, may be much faster than
breadth-first

Space? O(bm), i.e., linear space!
Optimal? No

29 Sept 2008 CS 367 - Blind Search 56

Depth-limited search

I
= depth-first search with depth limit /

i.e., nodes at depth /have no successors

Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred? + false
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result +— RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

29 Sept 2008 CS 367 - Blind Search

57

[terative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth< 0 to oo do
result < DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

29 Sept 2008 CS 367 - Blind Search

58

q Iterative deepening search / =0

Limit=0 20 ®

29 Sept 2008 CS 367 - Blind Search

59

q Iterative deepening search / =1

Limit=1 2O ©
5) >(5) © >

29 Sept 2008 CS 367 - Blind Search

60

q Iterative deepening search / =2

e m m m

29 Sept 2008 CS 367 - Blind Search

61

q Iterative deepening search / =3

Limit=3 2O

29 Sept 2008 CS 367 - Blind Search

62

q Iterative deepening search

Number of nodes generated in a depth-limited search to
depth d with branching factor b:

Nojc =00 +b" + b2 + ... + b2 + b1 + b

Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

Nips = (d+1)b% + d b~ + (d-1)bA2 + ... + 3b92 +2bd-1 + 1bd

For b =10, d = 5,
Np =1+ 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
N;ps = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

29 Sept 2008 CS 367 - Blind Search 63

q Properties of iterative

[_deepening search

Complete? Yes

Time? (d+1)b° + d b* + (d-1)b° + ...

O(b°)
Space? O(bd)
Optimal? Yes, if step cost = 1

29 Sept 2008 CS 367 - Blind Search

64

q Summary of algorithms

Criterion | Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time O(b* 1Y) O®/Cy o™ O O(b?)
Space O(b*Y) oIy O@m) O®Bl) O(bd)
Optimal? Yes Yes No No Yes

29 Sept 2008

CS 367 - Blind Search

65

q Repeated states

|
Failure to detect repeated states can turn a
linear problem into an exponential one!

29 Sept 2008 CS 367 - Blind Search

66

W Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node «+— REMOVE- FRONT(fringe)
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
if STATE[nO0de] is not in closed then
add STATE[node| to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)

29 Sept 2008 CS 367 - Blind Search

67

q Summary

I

Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

29 Sept 2008 CS 367 - Blind Search 68

