
Solving problems by searching

Chapter 3

29 Sept 2008 CS 367 - Blind Search 2

Outline

 Problem-solving agents
 Problem types
 Problem formulation
 Example problems
 Basic search algorithms

29 Sept 2008 CS 367 - Blind Search 3

Levels of Abstraction

 A system can be described at many different
levels of abstraction.

 For example, a light switch can be described:
 In terms of how to use it, e.g., up is off , etc.
 In terms of current flow, e.g., so many volts,

etc.
 In terms of electron clouds and quantum

physics, e.g., the energy liberated by an electron
going to another orbital level, etc.

29 Sept 2008 CS 367 - Blind Search 4

Computer Systems Descriptions

 Computer systems can also be described at
many different levels of abstraction:
 In terms of the electronic circuitry of the

computer.
 In terms of the programs being run on the

computer.
 In terms of the knowledge that explains the

behavior of the system.

29 Sept 2008 CS 367 - Blind Search 5

The Knowledge Level Hypothesis

 (Newell, 1982) “There exists a distinct
computer systems level, lying immediately
above the symbol level, which is
characterized by knowledge as the medium
and the principle of rationality as the law of
behavior.”

 What does this mean and what does it have
to do with AI?

29 Sept 2008 CS 367 - Blind Search 6

What It Means

 Given a “rationally designed” artifact, we assume
that it has a goal and that, when it functions
properly, it acts in such a manner as to achieve
that goal.

 We assume that the designer essentially mapped
the various environments the artifact could be in to
the actions the artifact should perform in order to
achieve the goal.

 This can require the designer to be quite
knowledgeable about a lot of things.

29 Sept 2008 CS 367 - Blind Search 7

What does this mean for AI?

 We want to be able to tell the “artifact” what goals
it should achieve and it should figure out how to
achieve those goals given its current circumstance.

 We want to move the knowledge from the
“designer” into the artifact so that it can do what
he can do.

 One step in this direction is logic-based
programming (Prolog), another is the development
of domain-independent planners.

29 Sept 2008 CS 367 - Blind Search 8

Transferring the Knowledge

 What is involved in moving this knowledge?
 How to use it: Reasoning/Planning.
 How to represent it: Knowledge Representations.
 How to acquire it: DataMining/Machine Learning.

 We will be primarily concerned with how to
use and represent knowledge to solve our
problems.

29 Sept 2008 CS 367 - Blind Search 9

Problem-Space Hypothesis

 The fundamental organisational unit of all human
symbolic activity is the problem space. (Newell,
1980)

 "The rational activity in which people engage to
solve a problem can be described in terms of:
 (1) a set of states of knowledge,
 (2) operators for changing one state into another,
 (3) constraints on applying operators
 and (4) control knowledge for deciding which operator to

apply next."

29 Sept 2008 CS 367 - Blind Search 10

Problem-solving agents

29 Sept 2008 CS 367 - Blind Search 11

Example: Romania

 On holiday in Romania; currently in Arad.
 Flight leaves tomorrow from Bucharest
 Formulate goal:

 be in Bucharest

 Formulate problem:
 states: various cities
 actions: drive between cities

 Find solution:
 sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

29 Sept 2008 CS 367 - Blind Search 12

Example: Romania

29 Sept 2008 CS 367 - Blind Search 13

Outline

 Problem-solving agents
 Problem types
 Problem formulation
 Example problems
 Basic search algorithms

29 Sept 2008 CS 367 - Blind Search 14

Problem types

 Deterministic, fully observable single-state problem
 Agent knows exactly which state it will be in; solution is a sequence

 Non-observable sensorless problem (conformant
problem)
 Agent may have no idea where it is; solution is a sequence

 Nondeterministic and/or partially observable contingency
problem
 percepts provide new information about current state
 often interleave search, execution

 Unknown state space exploration problem

29 Sept 2008 CS 367 - Blind Search 15

Example: vacuum world

 Single-state, start in #5.
Solution?

29 Sept 2008 CS 367 - Blind Search 16

Example: vacuum world

 Single-state, start in #5.
Solution? [Right, Suck]

 Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?

29 Sept 2008 CS 367 - Blind Search 17

Example: vacuum world

 Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

 Contingency
 Nondeterministic: Suck may

dirty a clean carpet
 Partially observable: location, dirt at current location.
 Percept: [L, Clean], i.e., start in #5 or #7

Solution?

29 Sept 2008 CS 367 - Blind Search 18

Example: vacuum world

 Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?

[Right,Suck,Left,Suck]

 Contingency
 Nondeterministic: Suck may

dirty a clean carpet
 Partially observable: location, dirt at current location.
 Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]

29 Sept 2008 CS 367 - Blind Search 19

Outline

 Problem-solving agents
 Problem types
 Problem formulation
 Example problems
 Basic search algorithms

29 Sept 2008 CS 367 - Blind Search 20

Single-state problem formulation

A problem is defined by four items:

1. initial state e.g., "at Arad"
2. actions or successor function S(x) = set of action–state pairs

 e.g., S(Arad) = {<Arad Zerind, Zerind>, … }
3. goal test, can be

 explicit, e.g., x = "at Bucharest"
 implicit, e.g., Checkmate(x)

4. path cost (additive)
 e.g., sum of distances, number of actions executed, etc.
 c(x,a,y) is the step cost, assumed to be ≥ 0

 A solution is a sequence of actions leading from the initial state to a
goal state

29 Sept 2008 CS 367 - Blind Search 21

Selecting a state space

 Real world is absurdly complex
 state space must be abstracted for problem solving

 (Abstract) state = set of real states
 (Abstract) action = complex combination of real actions

 e.g., "Arad Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

 For guaranteed realizability, all real states "in Arad“ must
get to some real state "in Zerind"

 (Abstract) solution =
 set of real paths that are solutions in the real world

 Each abstract action should be "easier" than the original
problem

29 Sept 2008 CS 367 - Blind Search 22

Outline

 Problem-solving agents
 Problem types
 Problem formulation
 Example problems
 Basic search algorithms

29 Sept 2008 CS 367 - Blind Search 23

Vacuum world state space graph

 states?
 actions?
 goal test?
 path cost?

29 Sept 2008 CS 367 - Blind Search 24

Vacuum world state space graph

 states? integer dirt and robot location
 actions? Left, Right, Suck
 goal test? no dirt at all locations
 path cost? 1 per action

29 Sept 2008 CS 367 - Blind Search 25

Example: The 8-puzzle

 states?
 actions?
 goal test?
 path cost?

29 Sept 2008 CS 367 - Blind Search 26

Example: The 8-puzzle

 states? locations of tiles
 actions? move blank left, right, up, down
 goal test? = goal state (given)
 path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

29 Sept 2008 CS 367 - Blind Search 27

Example: robotic assembly

 states?: real-valued coordinates of robot joint
angles parts of the object to be assembled

 actions?: continuous motions of robot joints
 goal test?: complete assembly
 path cost?: time to execute

29 Sept 2008 CS 367 - Blind Search 28

Computers & Common Sense:
Cyc

29 Sept 2008 CS 367 - Blind Search 29

Outline

 Problem-solving agents
 Problem types
 Problem formulation
 Example problems
 Basic search algorithms

29 Sept 2008 CS 367 - Blind Search 30

Tree search algorithms

 Basic idea:
 offline, simulated exploration of state space by

generating successors of already-explored states
(a.k.a.~expanding states)

29 Sept 2008 CS 367 - Blind Search 31

Tree search example

29 Sept 2008 CS 367 - Blind Search 32

Tree search example

29 Sept 2008 CS 367 - Blind Search 33

Tree search example

29 Sept 2008 CS 367 - Blind Search 34

Implementation: general tree search

29 Sept 2008 CS 367 - Blind Search 35

Implementation: states vs. nodes

 A state is a (representation of) a physical configuration
 A node is a data structure constituting part of a search tree

includes state, parent node, action, path cost g(x), depth

 The Expand function creates new nodes, filling in the
various fields and using the SuccessorFn of the problem
to create the corresponding states.

29 Sept 2008 CS 367 - Blind Search 36

Search strategies

 A search strategy is defined by picking the order of node
expansion

 Strategies are evaluated along the following dimensions:
 completeness: does it always find a solution if one exists?
 time complexity: number of nodes generated
 space complexity: maximum number of nodes in memory
 optimality: does it always find a least-cost solution?

 Time and space complexity are measured in terms of
 b: maximum branching factor of the search tree
 d: depth of the least-cost solution
 m: maximum depth of the state space (may be ∞)

29 Sept 2008 CS 367 - Blind Search 37

Uninformed search strategies

 Uninformed search strategies use only the
information available in the problem
definition

 Breadth-first search
 Uniform-cost search
 Depth-first search
 Depth-limited search
 Iterative deepening search

29 Sept 2008 CS 367 - Blind Search 38

Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new successors go
at end

29 Sept 2008 CS 367 - Blind Search 39

Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new successors go
at end

29 Sept 2008 CS 367 - Blind Search 40

Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new successors go
at end

29 Sept 2008 CS 367 - Blind Search 41

Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new successors go
at end

29 Sept 2008 CS 367 - Blind Search 42

Properties of breadth-first search

 Complete? Yes (if b is finite)
 Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)
 Space? O(bd+1) (keeps every node in memory)
 Optimal? Yes (if cost = 1 per step)

 Space is the bigger problem (more than time)

29 Sept 2008 CS 367 - Blind Search 43

Uniform-cost search

 Expand least-cost unexpanded node
 Implementation:

 fringe = queue ordered by path cost

 Equivalent to breadth-first if step costs all equal
 g is the optimum cost from init state to current state
 Complete? Yes, if step cost ≥ ε
 Time? # of nodes with g ≤ cost of optimal solution,

O(bceiling(C*/ ε)) where C* is the cost of the optimal solution
 Space? # of nodes with g ≤ cost of optimal solution,

O(bceiling(C*/ ε))
 Optimal? Yes – nodes expanded in increasing order of g(n)

29 Sept 2008 CS 367 - Blind Search 44

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search 45

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search 46

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search 47

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search 48

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search 49

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search 50

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search 51

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search 52

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search 53

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search 54

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search 55

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

29 Sept 2008 CS 367 - Blind Search 56

Properties of depth-first search

 Complete? No: fails in infinite-depth spaces, spaces
with loops
 Modify to avoid repeated states along path

 complete in finite spaces

 Time? O(bm): terrible if m (length of longest path
in search space) is much larger than d
 but if solutions are dense, may be much faster than

breadth-first

 Space? O(bm), i.e., linear space!
 Optimal? No

29 Sept 2008 CS 367 - Blind Search 57

Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

 Recursive implementation:

29 Sept 2008 CS 367 - Blind Search 58

Iterative deepening search

29 Sept 2008 CS 367 - Blind Search 59

Iterative deepening search l =0

29 Sept 2008 CS 367 - Blind Search 60

Iterative deepening search l =1

29 Sept 2008 CS 367 - Blind Search 61

Iterative deepening search l =2

29 Sept 2008 CS 367 - Blind Search 62

Iterative deepening search l =3

29 Sept 2008 CS 367 - Blind Search 63

Iterative deepening search

 Number of nodes generated in a depth-limited search to
depth d with branching factor b:

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

 Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

 For b = 10, d = 5,
 NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
 NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

 Overhead = (123,456 - 111,111)/111,111 = 11%

29 Sept 2008 CS 367 - Blind Search 64

Properties of iterative
deepening search

 Complete? Yes
 Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd =

O(bd)
 Space? O(bd)
 Optimal? Yes, if step cost = 1

29 Sept 2008 CS 367 - Blind Search 65

Summary of algorithms

29 Sept 2008 CS 367 - Blind Search 66

Repeated states

 Failure to detect repeated states can turn a
linear problem into an exponential one!

29 Sept 2008 CS 367 - Blind Search 67

Graph search

29 Sept 2008 CS 367 - Blind Search 68

Summary

 Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

 Variety of uninformed search strategies

 Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

