
A* and Graph Search

CS 367

Search & Tree/Graph Search

• IDA* is always implemented as a tree
search algorithm. Why?

• A* is almost always implemented as a
graph search algorithm. Why?

• (What is the difference between a tree
search and a graph search?)

Open List

• A* always needs an Open List
• Open List is used for selecting which

node to expand next.
• Usually implemented as a priority queue

(aka heap)

Closed List

• Closed list used for keeping track of
best paths found so far (so can return
the solution path).

• Closed list used to detect duplicate
states.

• Closed list usually implemented as hash
table (key being the state description).

Node List

• In a tree search, there may be many
nodes with the same state.

• In a graph search, only one node can
have a particular state.

• It may be possible to combine the open
and closed lists into a new list (the
Node list).

Adding Nodes to Node List

define in Prolog the updated relationship between a
node list, NL, along with a node, N, and a node
list, UNL. This relationship is defined formally as
follows:

Given that a node list never has two nodes that
have identical states, that N is never an element
of NL, that NL and UNL are sets, and that state
and fValue are functions that take a node as an
argument and return (respectively) the state
description or the f value of that node

updatedNodeList(NL, N, UNL) ⇔
 ((∀N1 ∈ NL state(N) ≠ state(N1))
 → UNL = NL ∪ {N})
∨ ((∃N1 ∈ NL state(N) = state(N1) &

fValue(N) ≥ fValue(N1))
 → UNL = NL)
∨ ((∃N1 ∈ NL state(N) = state(N1) &

fValue(N) < fValue(N1))
 → UNL = {N} ∪ NL – {N1})

﻿:- use_module(library(lists)). % for member/2 and delete/3 predicates
not(P) :- P, !, fail.
not(_).

/* node accessor and setter predicates
 ================================

 node data structure: node(State, ShouldExpand, FValue, ParentState)
*/
node(node(State, ShouldExpand, FValue, ParentState),
 State, ShouldExpand, FValue, ParentState).
state(node(State, _,_,_), State).
shouldExpand(node(_, ShouldExpand,_,_), ShouldExpand).
fValue(node(_,_, FValue,_), FValue).
parentState(node(_,_,_,ParentState), ParentState).

updatedNodeList/3

/* updatedNodeList(+NodeList, +Node, -UpdatedNodeList)

==
===

*/
% put your code here, you only need to write a clause per case
% you will only need the predicates defined above
% and the member/2 and delete/3 predicates defined in the lists
% library loaded above

member/2

• member(Element, List)

delete/3

• delete(List1, Element, List2)

