
CompSci 366

Introduction to Planning

What’s Happening

• 6 Lectures Covering:
– Classical Plan Representation
– Progression Planning
– Regression Planning
– Partial Order Planning

• 1 Assignment

Outline

• Why plan?

• Current Status & Future of Planning

• Modeling a Domain

• Plans and Planning

Why Plan?

• We have a problem!
– We have a goal that isn’t currently achieved.

Why Plan?

• We have a problem!
– We have a goal that isn’t currently achieved.

• We don’t readily know how to solve it!
– Need to think about how to solve it.

Why Plan?

• We have a problem!
– We have a goal that isn’t currently achieved.

• We don’t readily know how to solve it!
– Need to think about how to solve it.

• What we want is a plan!
– Don’t simply want to know if it is achievable, want

a plan that will achieve it.

How Do We Plan?

• We usually do mental simulations of scenarios.
• Not just one scenario, first one rarely succeeds.
• But a search through a space of different

scenarios for one that achieves our goal.
• These scenarios describe our problem space

Problem Space Hypothesis

• Allen Newell proposed the Problem Space
Hypothesis: namely that all human problem-
solving can be described in terms of:
– Situations
– Operators that have preconditions and effects.
– Search control knowledge.

• Planners are certainly built this way.

Should We Always Plan?

• In general, planning is very computationally
expensive!!!!

Should We Always Plan?

• In general, planning is very computationally
expensive!!!!

• Even in very simplified models of our
domains!!

Should We Always Plan?

• In general, planning is very computationally
expensive!!!!

• Even in very simplified models of our
domains!!

• In everyday life, caching is usually better than
planning.

When Should An Agent Plan?

• When it has a problem.

When Should An Agent Plan?

• When it has a problem.
• That it doesn’t already have a cached solution

for.

When Should An Agent Plan?

• When it has a problem.
• That it doesn’t already have a cached solution

for.
• But where it has a domain model which will

allow it to explore possible solution scenarios.

Examples From NASA

• The Remote Agent Experiment (RAX)

Examples From NASA

• The Remote Agent Experiment (RAX)

• The Mars Robotic Outpost

Planning Today

• Experiencing a renaissance.

• Becoming an important component in real-life
agents.

• Rapidly changing.

What We’re Going To Study

• Many modern planning approaches are
reformulations of classical planning approaches.

What We’re Going To Study

• Many modern planning approaches are
reformulations of classical planning approaches.

• We only have 6 lectures.

What We’re Going To Study

• Many modern planning approaches are
reformulations of classical planning approaches.

• We only have 6 lectures.

• So we’re going to study classical planning.

Our First Glimpse of
Classical Planning

• Will describe an approach to :
– Domain modelling (this lecture)

– Search space structure (next lecture)

– Search space traversal (next lecture)

Domain Modelling

• Classical assumptions
• Problem representation
• Situation representation
• Goal Representation
• Action representation
• The simulation process
• Plan representation

Classical Assumptions

• Finite propositional domains.

• Omniscience.

• Actions are completely deterministic.

• No exogenous events.

Classical Assumptions

• All actions take unit time to occur.

• Only qualitative resources.

• All actions occur sequentially.

Domain Modelling

• Classical assumptions
• Problem representation
• Situation representation
• Goal Representation
• Action representation
• The simulation process
• Plan representation

Problem Representation

• Problem is described by:
– A complete description of the initial situation.

– A description of the desired goals.

Domain Modelling

• Classical assumptions
• Problem representation
• Situation representation
• Goal Representation
• Action representation
• The simulation process
• Plan representation

Situation Representation

• Omniscience => must be able to determine the
truth/falsity of all propositions for a given
situation.

• Generally, situations cannot be represented by
vectors.

• Situations are represented by propositional
expressions.

Situation Representation cont’d

• Given a situation, how do we represent it?

c
a b

Situation Representation cont’d

• Need to do some domain ontology
engineering
– What aspects are important?
– What do we want to capture?

• In general, very difficult to get right.

Sample Problem

• What’s important and needs to be represented?
• Assume we only need the following predicates:

– on(Block1, Thing1)
– clear(Block)

c
a b

=> b
c

a

Situation Representation cont’d

• Given our ontology, how would we describe
this situation?

• Need to know everything about situation.

c
a b

Situation Representation cont’d

• What about : on(c,a), on(a,table), clear(c),
on(b, table), clear(b), ~on(c,b), ~on(c,table),
on(c,a) ^ on(a,table), on(c,a) v on(a,b), …

c
a b

Situation Representation cont’d

• Negated literals: an infinite number of things
that aren’t true in a given situations.

• Logical expressions: an infinite number of true
expressions can be built up from logical
combinations of literals.

c
a b

Situation Representation cont’d

• Negated literals: use closed world assumption
(CWA) [similar to negation by failure in
Prolog].

• Logical expressions: use deduction to evaluate.

c
a b

Situation Representation cont’d

• Situation = {on(c,a), on(a,table), clear(c),
on(b, table), clear(b)}

• Want to be able to infer ~on(c,b), etc., and
on(c,a) ^ on(a,table), etc., from this
representation.

c
a b

Domain Modelling

• Classical assumptions
• Problem representation
• Situation representation
• Goal Representation
• Action representation
• The simulation process
• Plan representation

Goal Representation

• In situations, the fact that on(b,c) is not true is
presented by not having them in the list of true
literals.

• How would we represent the goal of wanting
on(b,c) to be false?

Goal Representation

• For states, there are only 2 options a literal is
either true or it is false.

• For goals, there are 3 options, a literal is desired
to be true, desired to be false, or we don’t care.

• With goals we need to distinguish between what
we want to be false and what we don’t care
about.

Goal Representation

• How would we represent the goal of wanting
on(b,c) to be false versus not caring about it?

• For us, we represent it as not(on(b,c)).

• Literals we don’t care about are not mentioned
in the goal description.

Problem Representation Revisited

• Initial situation = {on(c,a), on(a,table),
clear(c), on(b, table), clear(b)}

• Goal situation = {on(a,b), on(b,c)}, note
haven’t said what, if anything, is on top of a nor
what c is on top of, it’s a “don’t care”.

c
a b

=> b
c

a

Domain Modelling

• Classical assumptions
• Problem representation
• Situation representation
• Goal Representation
• Action representation
• The simulation process
• Plan representation

Action Representation

• Propositionally based.
• Use action schema rather than concrete actions

(i.e., parameterised actions).
• Need to describe:

– When action is legal.
– What are the effects of executing the action.
– Perhaps, when the action makes sense.

Action Representation cont’d

• Action schema represents actions that will take
place in our simulations and reflect what
happens in our domain.

• Action representation includes:
– Action schema name.
– Action schema parameters.
– Action preconditions.
– Action effects.

Action Representation cont’d

• Example action schema:
– Move block from location to location.
– op(move, [Block, FromLoc, ToLoc],

[on(Block,FromLoc), clear(Block), clear(ToLoc)],
[not(on(Block,FromLoc)), clear(FromLoc),
not(clear(ToLoc)), on(Block, ToLoc)])

• What’s wrong with this schema?

Action Representation cont’d

• What happens when ToLoc is the table?

Action Representation cont’d

• What happens when ToLoc is the table?
– Can only move blocks to the table at certain times.
– Moving a block to the table makes the table no

longer clear (whatever that means, what does
“clear” mean anyway?).

– Then can’t move anything to it until it’s made clear
again.

• How could we fix this?

Action Representation cont’d

• One way: extend domain language by
introducing new action for moving blocks to
table: newStack(Block, FromLoc)

• Also, check that move’s ToLoc is a block: add
block type check to preconditions and add block
type info to situation descriptions.

Action Representation cont’d

• move action schema revisited:
– op(move, [Block, FromLoc, ToBlock],

[on(Block,FromLoc), clear(Block), block(ToBlock),
clear(ToBlock)],
[not(on(Block,FromLoc)), clear(FromLoc),
not(clear(ToBlock)), on(Block, ToBlock)])

• What else is wrong with this schema?

Action Representation cont’d

• What happens if Block = ToBlock?
– move’s preconditions are satisfied.
– But end up with a block being on top of itself.

• How do we fix this?

Action Representation cont’d

• One way would be to add the constraint that
Block and ToBlock can’t be the same block to
move’s preconditions: [on(Block,FromLoc), ...,
clear(ToBlock)] => [on(Block,FromLoc), …,
clear(ToBlock), neq(Block,ToBlock)]

Action Representation cont’d

• Note that neq(Block,ToBlock) is a different
kind of test from clear(ToBlock).

• The latter tests a situation, while the former
tests a planner choice.

• The latter is called an object-level test and the
former is called a meta-level test.

Action Representation cont’d

• Is our description of the move action good
enough now? How can we tell?

Action Representation cont’d

• Is our description of the move action good
enough now? How can we tell?

• It’s good enough if the plans our planner
creates using these descriptions usually (almost
always, …) succeed when we execute them in
the “real world”.

• How might it fail?

Action Representation cont’d

• It could fail if our preconditions don’t capture
all the relevant tests.

• In general there are an infinite number of
preconditions for the represented action to
adequately model the real world action.

• This representation problem is known as the
qualification problem.

Action Representation cont’d

• It could also fail if our effects don’t capture all
the relevant results.

• In general there are an infinite number of effects
for the represented action to adequately model
the real world action.

• This representation problem is known as the
ramification problem.

Domain Modelling

• Classical assumptions
• Problem representation
• Situation representation
• Goal Representation
• Action representation
• The simulation process
• Plan representation

Simulation Process

• How do we use the action descriptions to
simulate the effect of executing that action in a
given situation?
– The parameters must be instantiated.
– Simulation checks the action’s instantiated

preconditions are satisfied by the situation.
– Positive effect literals are added to the situation and

negative effect literals are removed from it.

Domain Modelling

• Classical assumptions
• Problem representation
• Situation representation
• Goal Representation
• Action representation
• The simulation process
• Plan representation

Plans & Planning
• Given a problem description with an initial

situation description and a goal description, find
a plan that transforms initial situation into one
that satisfies the goal description.

• How are we going to represent a plan?
– As a sequence (i.e., list) of steps.
– A step is an instantiated action schema that is part of

a plan. Note: there may be many steps that have the
same instantiated action schema.

Plans & Planning cont’d

• Note: given a plan and an initial situation, we
can simulate the effect of executing each step of
the plan upon the resulting situations.

Plans & Planning cont’d

• How do we find an adequate plan?
• One way is the following:

– Transform the problem description into an initially
“empty” plan.

– Add actions into the “partial” plan until it represents
a solution to the problem.

Summary

• Planning is how an intelligent agent figures out
how to achieve its goals.

• Planning is becoming quite important as we
attempt to build evermore competent agents.

• Newell’s Problem Space Hypothesis: problem-
solving can be described as states, operators,
and search control knowledge.

Summary cont’d

• A problem is an initial situation and a goal
description.

• A situation is a set of positive ground object-
level literals.

• A goal description is a set of possibly both
positive and negative object- and meta-level
terms.

Summary cont’d

• A plan is a sequence of steps.

• A step is a domain action.

• A domain action has a name, set of parameters,
precondition, and effects.

Summary cont’d

• Creating the predicates and the action
descriptions is part of domain engineering.

• Describing domain actions has two problems:
– Qualification Problem
– Ramification Problem

Summary cont’d

• We can create pseudo-steps that represent the
initial situation and the goal description.

• With these pseudo-steps, we can create empty
plans.

• Planning becomes a plan refinement process.
• We will look at one such process next time.

