Informed Search algorithms

Chapter 4, Sections 1–2, 4

Outline

- ♦ Best-first search
- \Diamond A* search
- ♦ Heuristics
- ♦ Hill-climbing
- \Diamond Simulated annealing

Review: Tree search

```
function TREE-SEARCH( problem, fringe) returns a solution, or failure fringe \leftarrow \text{INSERT}(\text{Make-Node}(\text{Initial-State}[problem]), fringe) loop do

if fringe is empty then return failure node \leftarrow \text{Remove-Front}(fringe)

if \text{Goal-Test}[problem] applied to \text{State}(node) succeeds return node fringe \leftarrow \text{InsertAll}(\text{Expand}(node, problem), fringe)
```

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an *evaluation function* for each node

– estimate of "desirability"

⇒ Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases:

greedy search A* search

Romania with step costs in km

Part II: Lecture 2 5 of 39 Chapter 4, Sections 1–2, 4 5

Greedy search

Evaluation function h(n) (heuristic)

= estimate of cost from n to the closest goal

E.g., $h_{\rm SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

Greedy search expands the node that appears to be closest to goal

Part II: Lecture 2 6 of 39 Chapter 4, Sections 1–2, 4

Part II: Lecture 2 9 of 39 Chapter 4, Sections 1-2, 4 9

Complete??

Complete?? No-can get stuck in loops, e.g., with Oradea as goal, lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow Complete in finite space with repeated-state checking

Time??

Complete?? No-can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space??

Part II: Lecture 2 13 of 39 Chapter 4, Sections 1–2, 4 13

Complete?? No-can get stuck in loops, e.g.,

 $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal??

Complete?? No-can get stuck in loops, e.g.,

 $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal?? No

\mathbf{A}^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$ so far to reach n

h(n) =estimated cost to goal from n

f(n) =estimated total cost of path through n to goal

A* search uses an *admissible* heuristic

i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the *true* cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

Types of Optimality

- Optimal Algorithm: guaranteed to find optimal solution.
- Optimally Efficient Algorithm: guaranteed not to expand any node that would not be expanded by a less informed optimal algorithm.

Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion

Optimality of A* (more useful)

Lemma: A^* expands nodes in order of increasing f value*

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

A* - Optimally Efficient

Part II: Lecture 2 26 of 39

Informedness

A heuristic h_1 is less informed than heuristic h_2 if for all nongoal nodes n: $h_1(n) < h_2(n)$.

A* is Optimally Efficient

Proof:

Assume that h_1 is less informed than h_2 and that there exists a non-goal node n such h_2 expands n but h_1 does not. This means $f_{h_1}(n) \ge f_{h_2}(n)$.

Consider $f_{h_I}(n) = g(n) + h_I(n)$ and $f_{h_2}(n) = g(n) + h_2(n)$ Then $h_I(n) \ge h_2(n)$ but h_I is less informed than h_2 .

Therefore *n* cannot exist.

Properties of A^*

Complete??

$\overline{\textbf{Properties of A}^*}$

 $\underline{\text{Complete}??} \text{ Yes, unless there are infinitely many nodes with } f \leq f(G)$

Time??

Properties of A^*

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times$ length of soln.]

Space??

Properties of A^*

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal??

Properties of A*

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

 A^* expands all nodes with $f(n) < C^*$

 A^* expands some nodes with $f(n) = C^*$

 A^* expands no nodes with $f(n) > C^*$

Proof of lemma: Consistency

A heuristic is *consistent* if

$$h(n) \le c(n, a, n') + h(n')$$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n, a, n') + h(n')$
 $\geq g(n) + h(n)$
= $f(n)$

I.e., f(n) is nondecreasing along any path.

Consistency & Tree vs Graph Search

- When not worrying about duplicate states, don't need to worry about consistency of heuristics.
- When worrying about duplicate states (e.g., graph searching) if heuristic is consistent then the first time you hit a state you have found the optimal path to it and you can throw away all the later paths to it.
- If the heuristic is not consistent then whenever you hit a path to an already generated state, you need to check whether the new path is shorter than the recorded path and if so then update the recorded information.

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)

 $\frac{h_1(S)}{h_2(S)} = ??$

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

$$\frac{h_1(S)}{h_2(S)} = ?? 7$$
 $\frac{h_2(S)}{h_2(S)} = ?? 4+0+3+3+1+0+2+1 = 14$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d=14$$
 IDS $=$ 3,473,941 nodes
$${\sf A}^*(h_1)=539 \ {\sf nodes}$$

$${\sf A}^*(h_2)=113 \ {\sf nodes}$$

$$d=24 \ {\sf IDS} \approx {\sf 54,000,000,000} \ {\sf nodes}$$

$${\sf A}^*(h_1)=39,135 \ {\sf nodes}$$

$${\sf A}^*(h_2)=1,641 \ {\sf nodes}$$

Relaxed problems

Admissible heuristics can be derived from the *exact* solution cost of a *relaxed* version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move *anywhere*, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem