CS 367 - Artificial Intelligence 2007 Semester 2

INFORMED SEARCH ALGORITHMS

CHAPTER 4, SECTIONS 1-2, 4

Part Il: Lecture 2 1 of 39 Chapter 4, Sections 1-2, 4 1

CS 367 - Artificial Intelligence 2007 Semester 2

Outline

> Best-first search
> A* search

> Heuristics

¢ Hill-climbing

> Simulated annealing

Part Il: Lecture 2 2 of 39 Chapter 4, Sections 1-2, 4 2

Mike
Cross-Out

Mike
Cross-Out

CS 367 - Artificial Intelligence 2007 Semester 2

Review: Tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe <~ INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node +— REMOVE-FRONT(fringe)
if GOAL-TEST[problem| applied to STATE(node) succeeds return node
fringe <+ INSERTALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of node expansion

Part Il: Lecture 2 3 of 39 Chapter 4, Sections 1-2, 4 3

CS 367 - Artificial Intelligence 2007 Semester 2

Best-first search

Idea: use an evaluation function for each node
— estimate of “desirability”

= Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A* search

Part Il: Lecture 2 4 of 39 Chapter 4, Sections 1-2, 4 4

CS 367 - Artificial Intelligence

2007 Semester 2

Romania with step costs in km

] Oradea

Arad
Sibiu gg Fagaras
118
80
Timisoara . Rimnicu Vilcea
11 ; ;
M Lugoj Pitesti
70 -
"] Mehadia 10
75 138
Dobreta [] 120
L Craiova

Part II: Lecture 2

Neamt
. 87
] lasi
92
[} Vaslui
211 142
98 _
85]] Hirsova
Urziceni
] 86
Bucharest
90]
. . Eforie
] Giurgiu
5 of 39

Straight-line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
lasi 226
L ugoj 244
M ehadia 241
Neamt 234
Oradea 380
Pitesti 08
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vadui 199
Zerind 374

Chapter 4, Sections 1-2, 4 5

CS 367 - Artificial Intelligence 2007 Semester 2

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hsup(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Part Il: Lecture 2 6 of 39 Chapter 4, Sections 1-2, 4 6

CS 367 - Artificial Intelligence 2007 Semester 2

Greedy search example

366

Part Il: Lecture 2 7 of 39 Chapter 4, Sections 1-2, 4 7

CS 367 - Artificial Intelligence 2007 Semester 2

Greedy search example

253 329 374

Part Il: Lecture 2 8 of 39 Chapter 4, Sections 1-2, 4 8

CS 367 - Artificial Intelligence 2007 Semester 2

Greedy search example

329 374

366

Part Il: Lecture 2 9 of 39 Chapter 4, Sections 1-2, 4 9

CS 367 - Artificial Intelligence 2007 Semester 2

Greedy search example

329 374

Part II: Lecture 2 10 of 39 Chapter 4, Sections 1-2, 4 10

CS 367 - Artificial Intelligence

2007 Semester 2

Properties of greedy search

Complete??

Part Il: Lecture 2

11 of 39

Chapter 4, Sections 1-2, 4

11

CS 367 - Artificial Intelligence

2007 Semester 2

Properties of greedy search

Complete?? No—can get stuck in loops, e.g., with Oradea as goal,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time??

Part Il: Lecture 2

12 of 39

Chapter 4, Sections 1-2, 4

12

CS 367 - Artificial Intelligence

2007 Semester 2

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space??

Part Il: Lecture 2

13 of 39

Chapter 4, Sections 1-2, 4

13

CS 367 - Artificial Intelligence

2007 Semester 2

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space?? O(b™)—keeps all nodes in memory

Optimal??

Part Il: Lecture 2

14 of 39

Chapter 4, Sections 1-2, 4

14

CS 367 - Artificial Intelligence

2007 Semester 2

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space?? O(b™)—keeps all nodes in memory

Optimal?? No

Part Il: Lecture 2

15 of 39

Chapter 4, Sections 1-2, 4

15

CS 367 - Artificial Intelligence

2007 Semester 2

A* search

|dea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n)+ h(n)

(n) = cost so far to reach n
n) = estimated cost to goal from n

g
h(
f(n) = estimated total cost of path through n to goal

A* search uses an admissible heuristic
i.e., h(n) < h*(n) where h*(n) is the true cost from n.
(Also require h(n) > 0, so h(G) = 0 for any goal G.)

E.g., hsip(n) never overestimates the actual road distance

Theorem: A* search is optimal

Part Il: Lecture 2 16 of 39 Chapter 4, Sections 1-2, 4

16

CS 367 - Artificial Intelligence 2007 Semester 2

A* search example

366=0+366

Part Il: Lecture 2 17 of 39 Chapter 4, Sections 1-2, 4 17

CS 367 - Artificial Intelligence 2007 Semester 2

A* search example

393=140+253 447=118+329 449=75+374

Part Il: Lecture 2 18 of 39 Chapter 4, Sections 1-2, 4 18

CS 367 - Artificial Intelligence 2007 Semester 2

A* search example

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

Part Il: Lecture 2 19 of 39 Chapter 4, Sections 1-2, 4 19

CS 367 - Artificial Intelligence 2007 Semester 2

A* search example

A
- sbu_ Climisoara) C zerind >

447=118+329 449=75+374

Carad D P>Cragaras> COradea > @imniot Vieed

646=280+366 415=239+176 671=291+380

CCraiova > Pitesti > (_Sibiu_3

526=366+160 417=317+100 553=300+253

Part Il: Lecture 2 20 of 39 Chapter 4, Sections 1-2, 4 20

CS 367 - Artificial Intelligence

2007 Semester 2

A* search example

Arad
~_sbu_ Climisoara

447=118+329

> G o> @il

646=280+366 671=291+380
C_Sibiu_> CCraiova D> Pitesti > C_Sibiu_3
591=338+253 450=450+0 526=366+160 417=317+100 553=300+253
Part Il: Lecture 2 21 of 39

449=75+374

Chapter 4, Sections 1-2, 4 21

CS 367 - Artificial Intelligence

2007 Semester 2

A* search example

Arad
~_sbu_ Clmisoara

447=118+329

Carad > (Eagaras> Coradea > @mnauViced

646=280+366 671=291+380

C Shiu_> Pitesti
591=338+253 450=450+0 526=366+160 553=300+253
> C Craiova)
418=418+0 615=455+160 607=414+193
Part II: Lecture 2 22 of 39

449=

Chapter 4, Sections 1-2, 4

75+374

22

Types of Optimality

® Optimal Algorithm: guaranteed to find optimal solution.

®* Optimally Efficient Algorithm: guaranteed not to expand
any node that would not be expanded by a less informed
optimal algorithm.

Mike
Highlight

CS 367 - Artificial Intelligence 2007 Semester 2

Optimality of A* (standard proof)

Suppose some suboptimal goal G5 has been generated and is in the queue.

Let n be an unexpanded node on a shortest path to an optimal goal Gj;.
Sart

A

C@ G,
f(GQ) = g(Gg) since h(Gg) =0
> ¢(Gy) since (5 is suboptimal
> f(n since h is admissible

Since f(G3) > f(n), A* will never select GG, for expansion

Part Il: Lecture 2 24 of 39 Chapter 4, Sections 1-2, 4 23

CS 367 - Artificial Intelligence 2007 Semester 2

Optimality of A* (more useful)

Lemma: A* expands nodes in order of increasing f value*

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour ¢ has all nodes with f = f;, where f; < fii1

Part Il: Lecture 2 25 of 39 Chapter 4, Sections 1-2, 4 24

CS 367 - Artificial Intelligence 2007 Semester 2

A* - Optimally Efficient

Part Il: Lecture 2 26 of 39

Informedness

A heuristic /; 1s less informed than heuristic /4, 1f for all non-
goal nodes n: h;(n) < hy(n).

A* is Optimally Efficient

Proof:

Assume that /; 18 less informed than /4, and that there exists a
non-goal node n such /4, expands »n but /; does not. This

means f;(n) = fr2(n).

Consider f;,;(n) =g(n) + hy(n) and f;(n) = g(n) + hy(n)
Then h;(n) = hy(n) but &; 1s less informed than #,.

Therefore n cannot exist.

Mike
Highlight

Mike
Highlight

CS 367 - Artificial Intelligence 2007 Semester 2

Properties of A*

Complete??

Part Il: Lecture 2 29 of 39 Chapter 4, Sections 1-2, 4 25

CS 367 - Artificial Intelligence 2007 Semester 2

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with f < f(G)

Time??

Part Il: Lecture 2 30 of 39 Chapter 4, Sections 1-2, 4 26

CS 367 - Artificial Intelligence 2007 Semester 2

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with f < f(G)

Time?? Exponential in [relative error in h X length of soln.]

Space??

Part Il: Lecture 2 31 of 39 Chapter 4, Sections 1-2, 4 27

CS 367 - Artificial Intelligence 2007 Semester 2

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with f < f(G)

Time?? Exponential in [relative error in h X length of soln.]
Space?? Keeps all nodes in memory

Optimal??

Part Il: Lecture 2 32 of 39 Chapter 4, Sections 1-2, 4 28

CS 367 - Artificial Intelligence 2007 Semester 2

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with f < f(G)

Time?? Exponential in [relative error in h X length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes—cannot expand f; 1 until f; is finished

A* expands all nodes with f(n) < C*

A* expands some nodes with f(n) = C*
A* expands no nodes with f(n) > C*

Part Il: Lecture 2 33 of 39 Chapter 4, Sections 1-2, 4 29

CS 367 - Artificial Intelligence

2007 Semester 2

Proof of lemma: Consistency

A heuristic is consistent if

h(n) < c(n,a,n’) + h(n')

If A is consistent, we have c(n,a,n’)

(n) + h(n')

(n) + c(n,a,n’) + h(n')
g(n) + h(n)

f(n)

l.e., f(n) is nondecreasing along any path.

fn') =g

AV
Q

Part Il: Lecture 2 34 of 39

Chapter 4, Sections

1-2,

4

30

CS 367 - Artificial Intelligence 2007 Semester 2

Consistency & Tree vs Graph Search

* When not worrying about duplicate states, don’t need
to worry about consistency of heuristics.

* When worrying about duplicate states (e.g., graph
searching) 1f heuristic 1s consistent then the first time
you hit a state you have found the optimal path to it and
you can throw away all the later paths to it.

* [f the heuristic 1s not consistent then whenever you hit
a path to an already generated state, you need to check
whether the new path 1s shorter than the recorded path
and 1f so then update the recorded information.

Part Il: Lecture 2 35 of 39

CS 367 - Artificial Intelligence

2007 Semester 2

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

Part Il: Lecture 2

I 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8
Start State Goal State
36 of 39

Chapter 4, Sections 1-2, 4

31

CS 367 - Artificial Intelligence

2007 Semester 2

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

hi(S) =77 7

ho(S) =77 44+0+434+3+140+2+1 = 14

Part Il: Lecture 2

I 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8
Start State Goal State
37 of 39

Chapter 4, Sections 1-2, 4

32

CS 367 - Artificial Intelligence

2007 Semester 2

Dominance

If ho(n) > hi(n) for all n (both admissible)
then he dominates hy and is better for search

Typical search costs:

d =14 IDS = 3,473,941 nodes
A*(h1) = 539 nodes
A*(hso) = 113 nodes

d =24 |IDS =~ 54,000,000,000 nodes
A*(h1) = 39,135 nodes
A*(hs) = 1,641 nodes

Part Il: Lecture 2 38 of 39

Chapter 4, Sections 1-2, 4 33

CS 367 - Artificial Intelligence 2007 Semester 2

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then hq(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then
ho(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Part Il: Lecture 2 39 of 39 Chapter 4, Sections 1-2, 4 34

