CS 367 Artificial Intelligence Semester 2 - 2007

CS 367

Artificial Intelligence

Part 1I: Search & Planning

Part Il: Lecture 1 10f 70

CS 367 Atrtificial Intelligence

Contact Info

Lecturer: Mike Barley
Oftice: C-394
Email: mbar098(@cs.auckland.ac.nz

Office Hours: by arrangement

Part Il: Lecture 1 20of 70

Semester 2 - 2007

CS 367 Atrtificial Intelligence

Course Info for Part 11

Assignment 2:
Available on web: 20 August
Due: 24 September
Topics:
* Problem Solving and Search
* Search Algorithms

o Uninformed Search Algorithms
o Informed Search Algorithms
* Planning
o Totally-Ordered Plans
o Partially-Ordered Plans

Part Il: Lecture 1 30of 70

Semester 2 - 2007

CS 367 Artificial Intelligence Semester 2 - 2007

PROBLEM SOLVING AND SEARCH

CHAPTER 3, SECTIONS 1-5

Part Il: Lecture 1 4 of 70 Chapter 3, Sections 1-5 1

CS 367 Artificial Intelligence

Semester 2 - 2007

Outline

IR RV SR

Problem-solving agents
Problem types
Problem formulation
Example problems

Basic search algorithms

Part Il: Lecture 1

50f 70

Chapter 3, Sections 1-5

3

CS 367 Artificial Intelligence Semester 2 - 2007

Problem-solving agents

Restricted form of general agent:

function SIMPLE-PROBLEM-SOLVING- AGENT(percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state +— UPDATE-STATE(state, percept)

if seq is empty then
goal<— FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM (state, goal)
seq<— SEARCH(problem)

action < RECOMMENDATION(seq, state)

seq < REMAINDER(seq, state)

return action

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.

Part Il: Lecture 1 6 of 70 Chapter 3, Sections 1-5 4

CS 367 Artificial Intelligence Semester 2 - 2007

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Part Il: Lecture 1 70of 70 Chapter 3, Sections 1-5 5

CS 367 Artificial Intelligence Semester 2 - 2007

Example: Romania

] Oradea
Neamt
- 87
75 .
] lasi
01‘“
. 92
Sibiu g9 Fagaras
118 80 [JVaslui
Timisoara lenlcu Vilcea
142
- - 211
111 5 Lugoj Pitesti
70 = 08 |
: 85 — Hirsova
JMehadia 101 .y Urziceni
ll_J 86
[E 19 138 Bucharest
Dobreta
- e 90
raiova o Eforie
] Giurgiu

Part Il: Lecture 1

8 of 70 Chapter 3, Sections 1-5 6

CS 367 Artificial Intelligence Semester 2 - 2007

Problem types

Deterministic, fully observable = single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable = conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable => contingency problem
percepts provide new information about current state
solution is a tree or policy
often interleave search, execution

Unknown state space = exploration problem (“online”)

Part Il: Lecture 1 90of 70 Chapter 3, Sections 1-5 7

CS 367 Atrtificial Intelligence Semester 2 - 2007

Example: vacuum world

Single-state, start in #5. Solution??

1 | =) 2 =)
B8 | BB B3R | 2R
3 | =A) 4 =)
3R 3R
5 | =) 6 =)
3R o3R
7 | =4 8 =]

Part Il: Lecture 1 10 of 70 Chapter 3, Sections 1-5 8

CS 367 Atrtificial Intelligence Semester 2 - 2007

Example: vacuum world

Single-state, start in #5. Solution??

|Right, Suck] 1 [=) 5 v
BR | 2B B3R | BB
Conformant, start in {1,2,3,4,5,6,7,8}
e.g., Right goes to {2,4,6,8}. Solution?7 3 # 4 - =)
5 |=A 6 =
&R o3R
7 | =4 8 =

Part Il: Lecture 1 11 of 70 Chapter 3, Sections 1-5 9

CS 367 Atrtificial Intelligence Semester 2 - 2007

Example: vacuum world

Single-state, start in #5. Solution??

' 1 | =) 2 =)
|Right, Suck] | o |
Conformant, start in {1,2,3,4,5,6,7,8}

e.g., Right goes to {2,4,6,8}. Solution?7 3 é 4 o8 =)
(Right, Suck, Le ft, Suck]

5 | =) 6 =)
Contingency, start in #5 2R LS
Murphy's I._aw: Suck can dirty a clean carpet 1 [o 0
Local sensing: dirt, location only.

Solution??

Part Il: Lecture 1 12 of 70 Chapter 3, Sections 1-5 10

CS 367 Atrtificial Intelligence Semester 2 - 2007

Example: vacuum world

Single-state, start in #5. Solution??

' 1 | =) 2 =)
|Right, Suck] | o |
Conformant, start in {1,2,3,4,5,6,7,8}

e.g., Right goes to {2,4,6,8}. Solution?7 3 é 4 o8 =)
(Right, Suck, Le ft, Suck]

5 | =) 6 =)
Contingency, start in #5 2R LS
Murphy's I._aw: Suck can dirty a clean carpet 1 [o 0
Local sensing: dirt, location only.

Solution??
[Right, if dirt then Suck]

Part Il: Lecture 1 13 0of 70 Chapter 3, Sections 1-5 11

CS 367 Artificial Intelligence Semester 2 - 2007

Single-state problem formulation

A problem is defined by four items:
initial state e.g., “at Arad”

successor function S(x) = set of action—state pairs

e.g., S(Arad) = {(Arad — Zerind, Zerind), ...}

goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be > 0

A solution is a sequence of actions
leading from the initial state to a goal state

Part Il: Lecture 1 14 of 70 Chapter 3, Sections 1-5 12

CS 367 Artificial Intelligence Semester 2 - 2007

Selecting a state space

Real world is absurdly complex
= state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., 'Arad — Zerind" represents a complex set
of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!

Part Il: Lecture 1 150f 70 Chapter 3, Sections 1-5 13

CS 367 Atrtificial Intelligence Semester 2 - 2007

Example: vacuum world state space graph

(e] T

S S

- a L. O U&F LT 2D

WILIN

states??
actions??
goal test??
path cost??

Part Il: Lecture 1 16 of 70 Chapter 3, Sections 1-5 14

CS 367 Atrtificial Intelligence Semester 2 - 2007

Example: vacuum world state space graph

(e] T

(P TR (F W=

LCE{Q E@DR
(D

S S

states??: integer dirt and robot locations (ignore dirt amounts)
actions??: Left, Right, Suck, NoOp

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Part Il: Lecture 1 17 of 70 Chapter 3, Sections 1-5 15

CS 367 Artificial Intelligence

Semester 2 - 2007

Example: The 8-puzzle

V4 2 4 1 2
5 6 4 5
8 3 1 7 8
Start State Goal State
states??
actions??
goal test??

path cost??

Part Il: Lecture 1 18 of 70

Chapter 3, Sections 1-5

16

CS 367 Artificial Intelligence Semester 2 - 2007

Example: The 8-puzzle

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

states?7: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)

path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Part Il: Lecture 1 19 of 70

Chapter 3, Sections 1-5 17

CS 367 Artificial Intelligence Semester 2 - 2007

Example: robotic assembly

p

- - R/\“R

states??: real-valued coordinates of

robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints
goal test??: complete assembly with no robot included!

path cost??: time to execute

Part Il: Lecture 1 20 of 70 Chapter 3, Sections 1-5 18

CS 367 Artificial Intelligence Semester 2 - 2007

Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Part Il: Lecture 1 21 0of 70 Chapter 3, Sections 1-5 19

CS 367 Atrtificial Intelligence Semester 2 - 2007

Tree search example

Part Il: Lecture 1 22 of 70 Chapter 3, Sections 1-5 20

CS 367 Atrtificial Intelligence Semester 2 - 2007

Tree search example

Part Il: Lecture 1 23 0of 70 Chapter 3, Sections 1-5 21

CS 367 Atrtificial Intelligence Semester 2 - 2007

Tree search example

Part Il: Lecture 1 24 of 70 Chapter 3, Sections 1-5 22

CS 367 Artificial Intelligence Semester 2 - 2007

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!

parent, action
A

State || 5 ||| 4 Node depth =6
g=6
6 Ill 1|l s
= ale
7l 3 | 2 st

The EXPAND function creates new nodes, filling in the various fields and
using the SUCCESSORFE'N of the problem to create the corresponding states.

Part Il: Lecture 1 250of 70 Chapter 3, Sections 1-5 23

CS 367 Artificial Intelligence Semester 2 - 2007

Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST[problem| applied to STATE(node) succeeds return node
fringe <+ INSERTALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors < the empty set

for each action, result in SUCCESSOR-FN|[problem|(STATE[node]) do
s<—a new NODE
PARENT-NODE[s| - node; ACTION([s| <— action; STATE[s| < result
PATH-COST[s] <~ PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] < DEPTH[node| + 1
add s to successors

return successors

Part Il: Lecture 1 26 of 70 Chapter 3, Sections 1-5 24

CS 367 Artificial Intelligence Semester 2 - 2007

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated /expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be o)

Part Il: Lecture 1 27 of 70 Chapter 3, Sections 1-5 25

CS 367 Artificial Intelligence Semester 2 - 2007

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search

Depth-limited search

lterative deepening search

Part Il: Lecture 1 28 of 70 Chapter 3, Sections 1-5 26

CS 367 Artificial Intelligence Semester 2 - 2007

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

>®)

Part Il: Lecture 1 29 of 70 Chapter 3, Sections 1-5 27

CS 367 Artificial Intelligence Semester 2 - 2007

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(A,
D> (B, ©

Part Il: Lecture 1 30 of 70 Chapter 3, Sections 1-5 28

CS 367 Artificial Intelligence Semester 2 - 2007

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Part Il: Lecture 1 31 0of 70 Chapter 3, Sections 1-5 29

CS 367 Artificial Intelligence Semester 2 - 2007

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(A
(B O
>O ® ® G

Part Il: Lecture 1 32 of 70 Chapter 3, Sections 1-5 30

CS 367 Artificial Intelligence Semester 2 - 2007

Properties of breadth-first search

Complete??

Part Il: Lecture 1 33 0of 70 Chapter 3, Sections 1-5 31

CS 367 Artificial Intelligence Semester 2 - 2007

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??

Part Il: Lecture 1 34 of 70 Chapter 3, Sections 1-5 32

CS 367 Artificial Intelligence Semester 2 - 2007

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b+0?+03+ ... +0+b(b?— 1) = O(b%}), i.e., exp. ind

Space??

Part Il: Lecture 1 35 0f 70 Chapter 3, Sections 1-5 33

CS 367 Artificial Intelligence Semester 2 - 2007

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b+0?+03+ ... +0+b(b?— 1) = O(b%}), i.e., exp. ind
Space?? O(b%*!) (keeps every node in memory)

Optimal??

Part Il: Lecture 1 36 of 70 Chapter 3, Sections 1-5 34

CS 367 Artificial Intelligence Semester 2 - 2007

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b+0?+03+ ... +0+b(b?— 1) = O(b%}), i.e., exp. ind
Space?? O(b%*!) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 10MB /sec
so 24hrs = 860GB.

Part Il: Lecture 1 37 of 70 Chapter 3, Sections 1-5 35

CS 367 Artificial Intelligence Semester 2 - 2007

Uniform-cost search

Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost > ¢

Time?? # of nodes with g < cost of optimal solution, O(bl¢"/¢l)
where C* is the cost of the optimal solution

Space?? # of nodes with g < cost of optimal solution, O(bw*/d)

Optimal?? Yes—nodes expanded in increasing order of g(n)

Part Il: Lecture 1 38 of 70 Chapter 3, Sections 1-5 36

CS 367 Artificial Intelligence Semester 2 - 2007

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

>®

Part Il: Lecture 1 39 of 70 Chapter 3, Sections 1-5 37

CS 367 Artificial Intelligence Semester 2 - 2007

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

(A
40 ©

Part Il: Lecture 1 40 of 70 Chapter 3, Sections 1-5 38

CS 367 Artificial Intelligence Semester 2 - 2007

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Part Il: Lecture 1 41 of 70 Chapter 3, Sections 1-5 39

CS 367 Artificial Intelligence Semester 2 - 2007

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Part Il: Lecture 1 42 of 70 Chapter 3, Sections 1-5 40

CS 367 Artificial Intelligence Semester 2 - 2007

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Part Il: Lecture 1 43 of 70 Chapter 3, Sections 1-5 41

CS 367 Artificial Intelligence Semester 2 - 2007

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Part Il: Lecture 1 44 of 70 Chapter 3, Sections 1-5 42

CS 367 Artificial Intelligence Semester 2 - 2007

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Part Il: Lecture 1 45 of 70 Chapter 3, Sections 1-5 43

CS 367 Artificial Intelligence Semester 2 - 2007

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Part Il: Lecture 1 46 of 70 Chapter 3, Sections 1-5 44

CS 367 Artificial Intelligence Semester 2 - 2007

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

(&
4€

Part Il: Lecture 1 47 of 70 Chapter 3, Sections 1-5 45

CS 367 Artificial Intelligence Semester 2 - 2007

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Part Il: Lecture 1 48 of 70 Chapter 3, Sections 1-5 46

CS 367 Artificial Intelligence Semester 2 - 2007

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Part Il: Lecture 1 49 of 70 Chapter 3, Sections 1-5 47

CS 367 Atrtificial Intelligence Semester 2 - 2007

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Part Il: Lecture 1 50 of 70 Chapter 3, Sections 1-5 48

CS 367 Artificial Intelligence Semester 2 - 2007

Properties of depth-first search

Complete??

Part Il: Lecture 1 51 0of 70 Chapter 3, Sections 1-5 49

CS 367 Artificial Intelligence Semester 2 - 2007

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time??

Part Il: Lecture 1 52 of 70 Chapter 3, Sections 1-5 50

CS 367 Artificial Intelligence Semester 2 - 2007

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??

Part Il: Lecture 1 53 of 70 Chapter 3, Sections 1-5 51

CS 367 Artificial Intelligence Semester 2 - 2007

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear spacel!

Optimal??

Part Il: Lecture 1 54 of 70 Chapter 3, Sections 1-5 52

CS 367 Artificial Intelligence Semester 2 - 2007

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear spacel!

Optimal?? No

Part Il: Lecture 1 55 of 70 Chapter 3, Sections 1-5 53

CS 367 Artificial Intelligence Semester 2 - 2007

Depth-limited search

— depth-first search with depth limit [,
I.e., nodes at depth [have no successors

Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln /fail /cutoff
RECURSIVE—DLS(MAKE—NODE(INITIAL—STATE[pTOblem]),problem limit)

function RECURSIVE-DLS(node, problem, limit) returns soln /fail /cutoff
cutoff-occurred? < false
if GOAL-TEST[problem|(STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result < RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

Part Il: Lecture 1 56 of 70 Chapter 3, Sections 1-5 54

CS 367 Artificial Intelligence Semester 2 - 2007

Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(PToblem) returns a solution

inputs: problem, a problem

for depth+ 0 to oo do
result < DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

end

Part Il: Lecture 1 57 of 70 Chapter 3, Sections 1-5 55

CS 367 Artificial Intelligence Semester 2 - 2007

Iterative deepening search [=0

Limit=0 N0 o

Part Il: Lecture 1 58 of 70 Chapter 3, Sections 1-5 56

CS 367 Atrtificial Intelligence Semester 2 - 2007

Iterative deepening search | =1

Limit=1 10 ™ Q. ./.\.
>(B) (© O

Part Il: Lecture 1 59 of 70 Chapter 3, Sections 1-5 57

CS 367 Atrtificial Intelligence Semester 2 - 2007

Iterative deepening search | =2

Limit=2 >® (A
>(E) ©

> (C)

Part Il: Lecture 1 60 of 70 Chapter 3, Sections 1-5 58

CS 367 Artificial Intelligence Semester 2 - 2007

Iterative deepening search [=3

Limit = 3 >® ®
>®) ©

Part Il: Lecture 1 61 of 70 Chapter 3, Sections 1-5 59

CS 367 Artificial Intelligence Semester 2 - 2007

Properties of iterative deepening search

Complete??

Part Il: Lecture 1 62 of 70 Chapter 3, Sections 1-5 60

CS 367 Artificial Intelligence Semester 2 - 2007

Properties of iterative deepening search

Complete?? Yes

Time??

Part Il: Lecture 1 63 of 70 Chapter 3, Sections 1-5 61

CS 367 Artificial Intelligence Semester 2 - 2007

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b° 4+ db' + (d — 1)b* + ... + b* = O(b")

Space??

Part Il: Lecture 1 64 of 70 Chapter 3, Sections 1-5 62

CS 367 Artificial Intelligence Semester 2 - 2007

Properties of iterative deepening search

Complete?? Yes
Time?? (d + 1)b° 4+ db' + (d — 1)b* + ... + b* = O(b")
Space?? O(bd)

Optimal??

Part Il: Lecture 1 65 of 70 Chapter 3, Sections 1-5 63

CS 367 Artificial Intelligence

Semester 2 - 2007

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b° 4+ db' + (d — 1)b* + ... + b* = O(b")
Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right:

N(IDS) = 50 + 400 + 3, 000 + 20, 000 4 100, 000 = 123,450

N(BFS) = 10+ 100 + 1,000 + 10,000 4 100, 000 + 999,990 = 1,111, 100

Part Il: Lecture 1 66 of 70 Chapter 3, Sections 1-5 64

CS 367 Artificial Intelligence Semester 2 - 2007

Summary of algorithms
Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes* Yes* No Yes, if | > d Yes
Time pit1 plC /e b b b
Space b+l b/ C /el bm bl bd
Optimal? Yes* Yes* No No Yes

Part Il: Lecture 1 67 of 70 Chapter 3, Sections 1-5 65

CS 367 Artificial Intelligence Semester 2 - 2007

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential
onel!

Part Il: Lecture 1 68 of 70 Chapter 3, Sections 1-5 66

CS 367 Artificial Intelligence Semester 2 - 2007

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed <— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST[problem|(STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe <+~ INSERTALL(EXPAND(node, problem), fringe)
end

Part Il: Lecture 1 69 of 70 Chapter 3, Sections 1-5 67

CS 367 Artificial Intelligence Semester 2 - 2007

Summary

Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

Variety of uninformed search strategies

lterative deepening search uses only linear space
and not much more time than other uninformed algorithms

Part Il: Lecture 1 70 of 70 Chapter 3, Sections 1-5 68

