
CompSci 367 S1 C Revised Assignment 3 2009

 1

Assignment 3

Anytime Search Algorithms

Important!
 The work done on this assignment must be your own work. Think carefully about any
problems you come across, and try to solve them yourself before you ask anyone else for
help. Under no circumstances should you work together with another student on any code
you or they write for the assignment. You are expected to modify the Prolog code that is
provided.

However, it is allowable and even encouraged for you to discuss what the provided
Prolog code does and how it does it. The class forum would be the most appropriate
place for this discussion to take place so that all the class can participate and learn :^)

It is allowable and even encouraged to discuss, on the class forum, exactly what is being
expected for this assignment.

Due: 11pm Friday 5th June

Worth: 10% of final grade

Introduction
A* needs to store all of the created but unexpanded nodes of the search space, in order to
be able to select the nodes to expand in ascending f value order. These unexpanded
nodes are usually stored in the open list. In many search spaces, these unexpanded nodes
constitute a majority of the nodes created so far. So, storing all the nodes created usually
does not cost significantly more than just storing the open list.

If all the created nodes are stored then we can avoid expanding nodes which have already
been expanded and for which an expansion will not yield any more useful information.
In some spaces (e.g., sliding tiles problem spaces), avoiding this redundant search can
result in significant savings. When A* checks for duplicate states, it is called a graph
search and the states which have already been expanded are stored in the closed list.

The closed list is also used to store all the back pointers (i.e., a pointer to the parent state
of a node), which enables A* to cheaply extract the solution path when a goal state is
found. If the heuristic is consistent (in addition to being admissible) then the first time a
state has been created, its optimal path (from the initial state) was found. Thus, when a
state is visited a subsequent time, it is not expanded again. This means that closed list
need only store the state description and its back pointer (i.e., parent state).

CompSci 367 S1 C Revised Assignment 3 2009

 2

If, however, the heuristic is not consistent then there is no guarantee that the first time a
state has been created that its optimal path has been found. Thus, later re-creations of
that state may discover better paths. Since we want A* to always find the optimal
solution path, it must always check whether a later visit to that state has found a shorter
path. If it has then that state must now have a back pointer to its new parent state. In
addition to changing the back pointer, the new lower cost path to the state may result in
there now being new lower cost paths to all of that state’s descendants. This means that
the change in the cost to that state needs to be propagated forward, so that the f values
associated with all that node’s descendants can be updated. Thus, if the heuristic is
inconsistent, not only must the A* algorithm become slightly more complicated, but, also
the lowest discovered f value for each state must also be stored with the state so that the
algorithm can detect when a new shorter path to it has been found.

This assignment looks at part of a new variant of A*. This new variant combines both
data structures into one, a node list. This new structure causes one more field to be added
to the node information, namely, whether it needs to be expanded. The part this
assignment explores is to define in Prolog the updated relationship between a node list,
NL, along with a node, N, and a node list, UNL. This relationship is defined formally as
follows:

Given that a node list never has two nodes that have identical states, that N is never
an element of NL, that NL and UNL are sets, and that state and fValue are functions
that take a node as an argument and return (respectively) the state description or
the f value of that node, then

updatedNodeList(NL, N, UNL) ⇔
 ((∀N1 ∈ NL state(N) ≠ state(N1))
 → UNL = NL ∪ {N})
∨ ((∃N1 ∈ NL state(N) = state(N1) & fValue(N) ≥ fValue(N1))
 → UNL = NL)
∨ ((∃N1 ∈ NL state(N) = state(N1) & fValue(N) < fValue(N1))
 → UNL = {N} ∪ NL – {N1})

Note that the three disjuncts form mutually disjoint and exhaustive cases (i.e., one and
only one of those three disjuncts can be true and one of them must be true for the
relationship to hold). These three disjuncts form the basis for the three Prolog clauses
you will write for the updatedNodeList/3 predicate. The first disjunct says that if no
node in NL has the same state description as N then UNL contains the node N in addition
to containing the exact same nodes as UNL. The second disjunct states that if there does
exist a node in NL that has the same state description as N and has an f value that is less
than or equal to N’s then UNL contains exactly the same nodes as NL. The last disjunct
states that if there does exist a node, N1, in NL that has the same state description as N
and has an f value that is greater than N’s then UNL has exactly the same nodes as NL
except that it doesn’t have N1 but does have N.

CompSci 367 S1 C Revised Assignment 3 2009

 3

Resources
In my assignment directory on the course web site, there is a file called
updatedNodeList.pl, which is what you must modify for your assignment. This file is
self-contained. You do not need any other files. Besides containing the auxillary
predicates you will need to do the assignment, it also contains some example test
predicates to perform some unit testing of your code.

Marking Schedule
You should write 3 clauses, one for each of the disjuncts that define the
updatedNodeList/3 predicate in this document. There are 3 marks for a correct Prolog
implementation of the first disjunct. There are 3 marks for a correct Prolog
implementation of the second disjunct. There are 4 marks for a correct Prolog
implementation of the last disjunct.

Submission
You submit your modified version of updatedNodeList.pl to the ADB.

