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The Main Features of Resolution

• Produces proofs by refutation.

• Operates on wff’s in clause form.

• Uses Unification to compare literals.
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Conjunctive Normal Form

All Romans know each other but they know people who aren’t Romans also.

[∀x : Roman(x) → ([∀y : Roman(y) → knows(x, y)] ∧
¬[∀y : knows(x, y) → Roman(y)])]

Aim:

• Flat structure

• Quantifiers separated

[¬Roman(x) ∨ ¬Roman(y) ∨ knows(x, y)] ∧
[¬Roman(x) ∨ knows(x, f(x, y))] ∧
[¬Roman(x) ∨ ¬Roman(f(x, y))]
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Clause Form

• For resolution to work, go one step further.

• Reduce a set of wff’s to a set of clauses.

• A set of clauses is a wff in conjunctive normal form without ∧.
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Algorithm: Convert to Clause Form

1. Eliminate →, using the fact that a → b is equivalent to ¬a ∨ b.

[∀x : ¬Roman(x) ∨ ([∀y : ¬Roman(y) ∨ knows(x, y)] ∧
¬[∀y : ¬knows(x, y) ∨ Roman(y)])]
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Algorithm: Convert to Clause Form (cont’d)

2. Reduce the scope of each ¬ to a single term, using:

• ¬(¬p) = p
• DeMorgan’s laws
¬(a ∧ b) = ¬a ∨ ¬b
¬(a ∨ b) = ¬a ∧ ¬b

• Correspondences between quantifiers
¬∀x : P (x) = ∃x : ¬P (x)
¬∃x : P (x) = ∀x : ¬P (x)

[∀x : ¬Roman(x) ∨ ([∀y : ¬Roman(y) ∨ knows(x, y)] ∧
[∃y : knows(x, y) ∧ ¬Roman(y)])]
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Algorithm: Convert to Clause Form (cont’d)

3. Standardize variables so that each quantifier binds a unique variable.

∀x : ¬Roman(x) ∨ (∀y : ¬Roman(y) ∨ knows(x, y) ∧
∃w : knows(x,w) ∧ ¬Roman(w))
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Algorithm: Convert to Clause Form (cont’d)

4. Move all quantifiers to the left of the formula without changing their
relative order.

∀x : ∀y : ∃w :
¬Roman(x) ∨ (¬Roman(y) ∨ knows(x, y) ∧
knows(x,w) ∧ ¬Roman(w))
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Algorithm: Convert to Clause Form (cont’d)

5. Eliminate existential quantifiers by replacing them with Skolem functions.

∀x : ∀y :
¬Roman(x) ∨ (¬Roman(y) ∨ knows(x, y) ∧
knows(x, f(x, y)) ∧ ¬Roman(f(x, y)))
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Algorithm: Convert to Clause Form (cont’d)

6. Drop the quantifiers.

¬Roman(x) ∨ (¬Roman(y) ∨ knows(x, y) ∧
knows(x, f(x, y)) ∧ ¬Roman(f(x, y)))
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Algorithm: Convert to Clause Form (cont’d)

7. Convert the wff into a conjunctive normal form.

• Distributive laws
P ∨ (Q ∧R) = (P ∨Q) ∧ (P ∨R)
P ∧ (Q ∨R) = (P ∧Q) ∨ (P ∧R)

[¬Roman(x) ∨ ¬Roman(y) ∨ knows(x, y)] ∧
[¬Roman(x) ∨ knows(x, f(x, y))] ∧
[¬Roman(x) ∨ ¬Roman(f(x, y))]
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Algorithm: Convert to Clause Form (cont’d)

8. Create a separate clause corresponding to each conjunct.

¬Roman(x) ∨ ¬Roman(y) ∨ knows(x, y)
¬Roman(x) ∨ knows(x, f(x, y))
¬Roman(x) ∨ ¬Roman(f(x, y)))
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Algorithm: Convert to Clause Form (cont’d)

9. Rename the variables so that no two clauses make reference to the same
variable

¬Roman(x) ∨ ¬Roman(y) ∨ knows(x, y)
¬Roman(z) ∨ knows(z, f(z, w))
¬Roman(v) ∨ ¬Roman(f(v, u)))

Hans W. Guesgen 12



COMPSCI 366 S1 C 2006 Foundations of Artificial Intelligence

The Basis of Resolution

• Resolution is a iterative procedure.

• At each step, two clauses (called parent clauses) are resolved, yielding a
new clause.

• No strong control strategies.
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Example

Eliminating literals:

winter ∨ summer
¬winter ∨ cold
summer ∨ cold

Contradiction:

winter
¬winter
2
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Algorithm: Propositional Resolution

Given a set of axioms F , prove proposition P .

1. Convert all propositions of F to clause form.

2. Negate P and convert the result to clause form. Add it to the set of clauses.

3. Repeat until either a contradiction is found or no progress can be made:

(a) Select two clauses. Call these the parent clauses.

(b) Resolve them together. The resolvent will be the disjunction of all of the literals

of both of the parent clauses with the following exception: If there are any pairs

of literals L and ¬L such that one of the parent clauses contains L and the other

contains ¬L, then select one such pair and eliminate both L and ¬L from the

resolvent.

(c) If the resolvent is the empty clause, then a contradiction has been found. If it is

not, then add it to the set of clauses available to the procedure.
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Example

Assume we want to prove R.

Given axioms Clause form
P P
(P ∧Q) → R ¬P ∨ ¬Q ∨R
(S ∨ T ) → Q ¬S ∨Q

¬T ∨Q
T T

¬P ∨ ¬Q ∨R ¬R
↘ ↙
¬P ∨ ¬Q P

↘ ↙
¬T ∨Q ¬Q

↘ ↙
¬T T

↘ ↙
2
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Resolution in Predicate Logic

In predicate logic, the situation is more complicated, since we must consider all possible

ways of substituting values for the variables.

The theoretical basis of the resolution procedure in predicate logic is Herbrand’s theorem:

• To show that a set of clauses S is unsatisfiable, it is necessary to consider only

interpretations over a particular set, called the Herbrand universe of S.

• A set of clauses S is unsatisfiable if and only if a finite subset of ground instances (in

which all bound variables have had a value substituted for them) of S is unsatisfiable.

To compare two literals with variables, apply unification.

Unification is a matching procedure that compares two literals and discovers whether there

exists a set of substitutions that makes them identical.

Hans W. Guesgen 17



COMPSCI 366 S1 C 2006 Foundations of Artificial Intelligence

Algorithm: Unify

Given two literals L1 and L2.

1. If L1 or L2 are variables or constants, then:

(a) If L1 and L2 are identical, then return NIL.

(b) Else if L1 is a variable, then if L1 occurs in L2 then return {FAIL}, else return

(L2/L1).

(c) Else if L2 is a variable, then if L2 occurs in L1 then return {FAIL}, else return

(L1/L2).

(d) Else return {FAIL}
2. If the initial predicate symbols in L1 and L2 are not identical, then return {FAIL}.
3. If L1 and L2 have a different number of arguments, then return {FAIL}.
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Algorithm: Unify (cont’d)

4. Set SUBST to NIL. (At the end of this procedure, SUBST will contain all the

substitutions used to unify L1 and L2.)

5. For i← 1 to number of arguments in L1:

(a) Call Unify with the ith argument of L1 and the ith argument of L2, putting result

in S.

(b) If S contains FAIL then return {FAIL}.
(c) if S is not equal to NIL then:

i. Apply S to the remainder of both L1 and L2.

ii. SUBST := APPEND(S, SUBST).

6. Return SUBST.
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Unify Example

1. ¬Roman(x2) ∨ loyalto(x2,Caesar) ∨ hate(x2,Caesar)

2. hate(Marcus,Caesar)
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Algorithm: Resolution

Given a set of statements F , prove statement P .

1. Convert all statements of F to clause form.

2. Negate P and convert the result to clause form. Add it to the set of clauses.

3. Repeat until either a contradiction is found, no progress can be made, or a predetermined

amount of effort has been expended:

(a) Select two parent clauses and resolve them together.

(b) The resolvent will be the disjunction of all the literals (with sustitutions) of both

parent clauses with the exception of one pair of complimentary literals:

• One of the parent clauses contains a literal T1 and the other ¬T2.

• T1 and T2 are unifiable.

(c) If the resolvent is the empty clause, then a contradiction has been found. If it is

not, then add it to the set of clauses available to the procedure.
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Example

Axioms in clause form:

1. man(Marcus)
2. Pompeian(Marcus)
3. ¬Pompeian(x1) ∨ Roman(x1)

4. ruler(Caesar)
5. ¬Roman(x2) ∨ loyalto(x2, Caesar) ∨ hate(x2, Caesar)
6. loyalto(x3, f1(x3))

7. ¬man(x4) ∨ ¬ruler(y1) ∨ ¬tryassassinate(x4, y1) ∨ ¬loyalto(x4, y1)

8. tryassassinate(Marcus, Caesar)

Prove:

9. hate(Marcus, Caesar)
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Example (cont’d)

• Assumption: ¬hate(Marcus, Caesar)
• Assumption and 5 result in 10: ¬Roman(Marcus) ∨ loyalto(Marcus, Caesar)
• 2 and 3 resolve in 11: Roman(Marcus)
• 10 and 11 resolve in 12: loyalto(Marcus, Caesar)
• 8 and 7 resolve in 13: ¬man(Marcus)∨¬ruler(Caesar)∨¬loyalto(Marcus, Caesar)
• 12 and 13 resolve in 14: ¬man(Marcus) ∨ ¬ruler(Caesar)
• 14 and 4 resolve in 15: ¬man(Marcus)
• 15 and 1 resolve in contradiction: 2

• Result: hate(Marcus, Caesar)
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Some Remarks on Resolution

• Resolution will find a contradiction if one exists.

• However, it may take a very long time.

• There are strategies for speeding up the process:

– Remove all tautologies (P (x) ∨Q(x),¬P (x) ∨ ¬Q(x)).

– Remove subsumed clauses (P (a) ∨Q(y) is subsumed by P (a)).

– Resolve pairs of clauses that contain complementary literals.

– Whenever possible, resolve either with one of the clauses that is part of ¬P or with

a clause generated by a resolution with such a clause (set-of-support strategy).

– Only make resolvents that use the most recent resolvent as one of their parents

(linear format).

– Whenever possible, resolve with clauses that have a single literal (unit-preference

strategy).
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