COMPSCI 366 S1 C 2006 Foundations of Artificial Intelligence

—Fuzzy Set Theory—

Hans W. Guesgen Computer Science Department

Fuzzy Sets

- $\bullet \ \, \text{A fuzzy subset} \,\, \tilde{A} \,\, \text{of a domain} \,\, D \,\, \text{is a set of ordered pairs,} \,\, \langle d, \mu_{\tilde{A}}(d) \rangle, \\ \text{where} \,\, d \in D \,\, \text{and} \,\, \mu_{\tilde{A}} : D \to [0,1] \,\, \text{is the membership function of} \,\, \tilde{A}.$
- ullet The membership function replaces the characteristic function of a classical subset $A\subseteq D$.
- If the range of $\mu_{\tilde{A}}$ is $\{0,1\}$, \tilde{A} is nonfuzzy and $\mu_{\tilde{A}}(d)$ is identical with the characteristic function of a nonfuzzy set.

Examples of Fuzzy Sets

• Real numbers considerably larger than 10:

$$\tilde{A} = \{ \langle d, \mu_{\tilde{A}}(d) \rangle \mid d \in \Re \} \text{ with } \mu_{\tilde{A}}(d) = \begin{cases} 0 & \text{for } d \leq 10 \\ \frac{1}{1 + \frac{1}{(d - 10)^2}} & \text{for } d > 10 \end{cases}$$

• Real numbers close to 10:

$$\tilde{A} = \{\langle d, \mu_{\tilde{A}}(d) \rangle \mid d \in \Re\} \text{ with } \mu_{\tilde{A}}(d) = \frac{1}{1 + (d-10)^2}$$

(Strong) α -Level Sets

• Let \tilde{A} be a fuzzy subset in D, then the (crisp) set of elements that belong to the fuzzy set \tilde{A} at least to the degree α is called the α -level set of \tilde{A} :

$$A_{\alpha} = \{ d \in D \mid \mu_{\tilde{A}}(d) \ge \alpha \}$$

• If the degree of the elements is greater than α , the set is called the strong α -level set of \tilde{A} :

$$A_{\overline{\alpha}} = \{ d \in D \mid \mu_{\tilde{A}}(d) > \alpha \}$$

Basic Operations on Fuzzy Sets

- The membership function $\mu_{\tilde{C}}(d)$ of the intersection $\tilde{C}=\tilde{A}\cap \tilde{B}$ is pointwise defined by $\mu_{\tilde{C}}(d)=\min\{\mu_{\tilde{A}}(d),\mu_{\tilde{B}}(d)\}.$
- The membership function $\mu_{\tilde{C}}(d)$ of the union $\tilde{C} = \tilde{A} \cup \tilde{B}$ is pointwise defined by $\mu_{\tilde{C}}(d) = \max\{\mu_{\tilde{A}}(d), \mu_{\tilde{B}}(d)\}.$
- The membership function $\mu_{\tilde{A}^c}(d)$ of the complement \tilde{A}^c of a fuzzy set \tilde{A} is pointwise defined by $\mu_{\tilde{A}^c}(d) = 1 \mu_{\tilde{A}}(d)$.

Generalization of Intersection: t-Norms

t-norms are two-valued functions from $[0,1] \times [0,1]$ into [0,1] that satisfy the following conditions:

- t(0,0) = 0 $t(\mu_{\tilde{A}}(d), 1) = t(1, \mu_{\tilde{A}}(d)) = \mu_{\tilde{A}}(d), \quad d \in D$
- $\begin{array}{ll} \bullet & t(\mu_{\tilde{A}}(d),\mu_{\tilde{B}}(d)) \leq t(\mu_{\tilde{U}}(d),\mu_{\tilde{V}}(d)) \\ & \text{if } \mu_{\tilde{A}}(d) \leq \mu_{\tilde{U}}(d) \text{ and } \mu_{\tilde{B}}(d) \leq \mu_{\tilde{V}}(d) \end{array} \end{aligned} \tag{monotonicity}$
- $t(\mu_{\tilde{A}}(d), \mu_{\tilde{B}}(d)) = t(\mu_{\tilde{B}}(d), \mu_{\tilde{A}}(d))$ (commutativity)
- $\begin{array}{l} \bullet \ t(\mu_{\tilde{A}}(d), t(\mu_{\tilde{B}}(d), \mu_{\tilde{C}}(d))) = \\ t(t(\mu_{\tilde{A}}(d), \mu_{\tilde{B}}(d)), \mu_{\tilde{C}}(d)) \end{array} \qquad \qquad \text{(associativity)}$

Generalization of Union: s-Norms

s-norms (or t-conorms) are two-valued functions from $[0,1] \times [0,1]$ into [0,1] that satisfy the following conditions:

- s(1,1) = 1 $s(\mu_{\tilde{A}}(d),0) = s(0,\mu_{\tilde{A}}(d)) = \mu_{\tilde{A}}(d), \quad d \in D$
- $s(\mu_{\tilde{A}}(d), \mu_{\tilde{B}}(d)) = s(\mu_{\tilde{B}}(d), \mu_{\tilde{A}}(d))$ (commutativity)
- $s(\mu_{\tilde{A}}(d), s(\mu_{\tilde{B}}(d), \mu_{\tilde{C}}(d))) = s(s(\mu_{\tilde{A}}(d), \mu_{\tilde{B}}(d)), \mu_{\tilde{C}}(d))$ (associativity)

Examples of *t*-Norms and *s*-Norms

• $\min\{\mu_{\tilde{A}}(d), \ \mu_{\tilde{B}}(d)\}\$ $\max\{\mu_{\tilde{A}}(d), \ \mu_{\tilde{B}}(d)\}$

(minimum) (maximum)

 $\begin{array}{l} \bullet \ \ \mu_{\tilde{A}}(d) \cdot \mu_{\tilde{B}}(d) \\ \mu_{\tilde{A}}(d) + \mu_{\tilde{B}}(d) - \mu_{\tilde{A}}(d) \cdot \mu_{\tilde{B}}(d) \end{array}$

(algebraic product)
(algebraic sum)

• $\max\{0, \ \mu_{\tilde{A}}(d) + \mu_{\tilde{B}}(d) - 1\}$ $\min\{1, \ \mu_{\tilde{A}}(d) + \mu_{\tilde{B}}(d)\}$ (bounded difference) (bounded sum)