
Operating Systems Lecture 23 page

Memory

If we define memory as a place where data is
stored there are many levels of memory:

• Processor registers

• Primary (or main) memory
• RAM

• Secondary memory
• slower and more permanent
• disks

• Tertiary memory
• archival
• removable

• Cache memory
one level of memory pretending to be another

• different levels of cache
• at the processor
• at devices
• and at hosts in distributed systems

1 Operating Systems Lecture 23 page

Main Memory

All processes need main memory.

Instructions and data being worked on are
brought into the processor from memory
and sent back to memory.

Traditional view:
Addresses are numbers: 0 – maxMem
An address goes out of the processor to the address bus of

memory.

0

maxMem

2

Operating Systems Lecture 23 page

Address binding

We can make the connection between code and data and
their addresses at different times:

• Compile time
Need to know exactly where the value will be stored.
Fixed addresses.
Not very flexible.

• Load time
Object modules need tables of offsets.
e.g. variable x is at 24 bytes from the start of the module
The mapping is done as the module is loaded.
Can also reference other modules – linking.
More flexible but can’t be changed after loading.

• Dynamic loading – don’t load unless called
• Dynamic linking similar (useful with shared libraries)

– may already be in memory – if shared between
processes needs OS help

• Run time
Mapping to final address maintained on the go by hardware.

3 Operating Systems Lecture 23 page

Memory spaces
Even in simple systems we would like a way of

protecting OS memory from our program and
enabling programs larger than memory to run.

Split memory

Can protect with a single fence register.

Alternatively if the OS is in ROM it is safe from
overwriting.

fence
OS

User
program

Overlays

Load needed instructions over the top of
ones not needed any more.

4

Operating Systems Lecture 23 page

Dividing memory
With linking loaders we can have multiple programs in

memory simultaneously.

We also want protection.

In the history section we saw separate partitions and
base and limit registers.

Both require contiguous memory.

The algorithm for base and limit registers is simple.
If the address is less than the base or greater than the base +

limit – 1 then we have an access violation.

The base and limit registers
 are loaded for each process.

We need a lot more memory, maybe
more than we have.
So we could use overlays in each
allocated area.

5 Operating Systems Lecture 23 page

Two different addresses
If we change our base and limit system to produce the address

by adding the base register (now called a relocation
register) to each address we can make all processes start
at address 0.

This is a huge conceptual change.

We now have two types of addresses.

The logical (virtual) address coming out of the process

and the physical (real) address used on the address bus to
memory.

We still have contiguous memory for each process but a
process can now be positioned anywhere in physical
memory without its addresses needing to be changed.

We can even move a process around, just copy the memory to
the new place and change the relocation register.

This is useful if we want to defragment memory to give one
large free area.

Have to be careful if moving data (e.g. from a device) into the process’
memory space.

6

Operating Systems Lecture 23 page

Split memory into smaller chunks
Rather than moving memory around to make big

enough spaces for processes we could have more
than one section of physical memory accessed by the
same process.

We need either a number of base-limit registers or a
table of the information.

204840962

51281921

102410240

limitbaseChunk

0 The process sees
3.5K of contiguous
memory.

7 Operating Systems Lecture 23 page

Two approaches
This technique evolved in two directions.

1. Same sized chunks – pages

2. Variable sized chunks – segments

Both have advantages and disadvantages.

Both use Memory Management Units (MMUs) in
hardware to do the translation between the logical
and the physical address.

Rather than doing a tedious calculation (where is logical
address 2000 on the previous slide?) to find what
chunk an address is in, we just split the address into
two parts.

Then the translation is much simpler and looks very
similar in both paged and segmented systems.

8

Operating Systems Lecture 23 page

Paged system address translation

Logical address is divided into:
Page number – index into a page table which contains base

address of each page in physical memory
Page offset (displacement) – added to base address to get the

physical address.

In this case there is a constant number of bits for the
offset. This means that pages are always powers of 2 in
size – usually from 2048(11 bits) to 8192(13 bits).

Some systems allow variable sizes of pages.

9 Operating Systems Lecture 23 page

x86 variable sized pages

Diagram from http://www.x86.org/articles/4mpages/4moverview.htm

10

Operating Systems Lecture 23 page

Frames and pages
The textbook makes a distinction between pages and

frames.

A frame is a page sized chunk of physical memory that
can be allocated to a page from a process.

A page is a frame sized chunk of logical memory that
fits in a frame.

It is common to refer to both simply as pages (physical
and logical).

Fragmentation
No external fragmentation between pages.
Internal fragmentation in any pages that are not completely

used.
Could be an average of ½ a page per process area (or ½ a page

per thread, ½ a page for heap space, ½ a page for code, ½ a
page for initialized data, etc).

So small pages save space but require larger page tables

11 Operating Systems Lecture 23 page

Tables

Each process has its own page table.

And commonly the OS has a frame table with
one entry for each frame showing whether it
is free or not and which process is currently
using it.

12

Operating Systems Lecture 23 page

Different sized chunks

Rather than constant sized pages we could design
our hardware to work with variable sized
chunks – these are known as segments. (Not to
be confused with variable sized pages.)

Memory model

How memory appears to be organised to the
program (and programmer) is sometimes
referred to as the memory model.

A segmented memory model is when we look at
memory as a group of logical units all with
addresses starting at zero.

Processes can have lots of segments
• functions
• global variables
• activation records
• large data structures (arrays)
• objects

13 Operating Systems Lecture 23 page

Segments
These logical units fit nicely into hardware specified segments where

different amounts of memory can be allocated in one chunk.

Segments are contiguous blocks of memory.
We will get problems of external fragmentation.

Our memory addresses become �
<segment name, displacement>.

And the translation process looks very much like paging, except there
is a length associated with each segment. We have a segment
descriptor table rather than a page table.

The physical address is the result of an addition rather than a
concatenation as it is in a paged system.

14

Operating Systems Lecture 23 page

Example
Ideally segments should be able to cover all of the

addressable memory – this could mean that logical
addresses might have more bits than physical
addresses.

Some segmented memory systems restrict segment sizes to prevent
this.

15 Operating Systems Lecture 23 page

Allocation strategies

Segments have no internal fragmentation – we
only allocate the amount of space we want.

What is one obvious problem with this?

But we get external fragmentation.

We have seen the allocation strategies before:
• first fit
• next fit (first fit but starting from where we were up

to)
• best fit
• worst fit

We can defragment memory if we want to find
large enough chunks. Faster than
defragmenting disks.

16

Operating Systems Lecture 23 page

How much space in the holes

Knuth’s 50% rule
If there are n segments there are n/2 holes.

Each segment is either below another segment or below a hole.
We always combine adjacent holes.

Each segment is released independently – so in a steady
state system the space above each segment will alternate
between being used and being free. 50% of the time there
will be a hole above each segment.

If the average size of a hole is the same as
the average size of a segment we need about
1/3 of the memory free to keep this system
running.

17 Operating Systems Lecture 23 page

Before next time

Read from the textbook
8.2 – Swapping
8.5 – Paging
8.6 – Structure of the Page Table
8.7.1 – Segmentation with Paging
9.2 – Demand Paging
18.6.2 – Linux virtual memory

18

