
Operating Systems Lecture 20 page

File versioning systems

It can be very useful to keep earlier versions of
files.

• We can recover from mistakes.

• We can restore damaged files.

• We can compare versions to see the changes
made.

• Useful for security purposes (self-securing storage)
• Also useful for other purposes – e.g. working on a

project with others and you want to see the changes
they made.

Similar to code management services like CVS.

• Sometimes we want to use earlier versions
and still hold on to the recent versions.

Can be done in a variety of ways but all
require extra disk space.

1 Operating Systems Lecture 20 page

Methods of versioning

A new version could be created when the file
is closed or saved.

A new version could be created after every
modification – known as comprehensive
versioning.

Obviously a lot more versions.

Either way we can -
• keep complete copies of all previous

versions
very space intensive
but fast to retrieve/recover

• keep a journal (or log) of changes
the journal keeps a record of the changes between two

versions
retrieving requires work to reproduce earlier versions

• keep a tree with all data
finding any version takes the same amount of time
can be slow for current version if the tree is big

2

Operating Systems Lecture 20 page

Example

e.g.

a file with the contents:

“Dear Mum, I hope you are well.”

gets modified and saved as:

“Dear Mum, I am doing really well in my
Operating System course. I hope you are
well.”

then as:

“Dear Mum, I thought I was doing really well
in my Operating System course until I sat
the test. I hope you are well.”

3 Operating Systems Lecture 20 page

Log version
Original version was

 Dear Mum, I hope you are well.

changes to get to version 2
11i54 (54 chars inserted at position 11)

changes to get to version 3
13d (a deletion at position 13)
am (the deleted data, this must be kept)
13i13
74i21

The current version is always stored.

 Dear Mum, I thought I was doing really
well in my Operating System course
until I sat the test. I hope you are
well.

To get previous versions have to go backwards through
the log.

If we want to be able to roll forward from a checkpoint
we need the new data in lines like 13i13.

4

Operating Systems Lecture 20 page

Multiversion B-tree

A1
1-?

B1
2-2

C
3-?

B2
2-?

D
3-?

B3
2-?

A2
1-?

The version ranges (2-?) show which version
the leaf is valid for.

? means up to the present.

A1: Dear Mum, I_
A2: hope you are well.
B1: am
B2: _doing really well in my Operating

System course
B3: ._I_
C: thought I was
D: _until I sat the test

5 Operating Systems Lecture 20 page

Advantages and disadvantages

Log system
• very compact
• access to the current version is the same as without

versioning
• slow to revert to previous versions especially if there

are many versions
• can use checkpoints to improve this, but this adds

considerably to the space requirement

Tree system
• very compact
• quick to revert to any previous version
• if there are lots of versions the tree can be big and then

access to the current version will be a little slow
• can keep a separate copy of the current version, this

also adds to the space requirement

No method works well if the data between
versions is completely different. We are
stuck with having to keep complete
versions.

6

Operating Systems Lecture 20 page

VMS versions

When a file is closed VMS checks the number
of versions. If the number is greater than the
maximum number then the oldest version is
discarded.

Windows XP onwards

It takes a checkpoint (restore points) of
important system files on a regular basis.
daily
on installation of new drivers and applications

NTFS maintains a log of all changes to
metadata, along with redo,undo information
and whether the change was committed.

So it can recover all metadata to a consistent
state after a crash (but not all data).

7 Operating Systems Lecture 20 page

Windows and Mac
Windows - Volume Shadow Copy

Keeps copies of files on volumes which have the service
turned on

Also used to create restore points
Works at the block level - only modified blocks are copied
Typically made once a day
Users cannot trigger new versions of individual files
Users can access versions from Previous Versions tab of

file properties
Not available at GUI level in Windows 8 but still in

Windows Server

OS X Lion onwards - Versions
Auto saves individual files (if enabled by the application)
Works on chunks (intelligently determined by content) -

only modified chunks are copied
Typically made every hour (autosave works every 5

minutes or during pauses)
Users can trigger new versions for individual files
Accessed differently after Mavericks

8

Operating Systems Lecture 20 page

ZFS snapshots

9 Operating Systems Lecture 20 page

Pruning

All conventional versioning systems use
pruning to keep the amount of data stored
under control.

Different heuristics

• a fixed number of versions

• treat some changes as more important than
others

• “observe” user behaviour, e.g., most often
accessed

• the user has to explicitly request a version
be held

snapshot systems – keep versions of files at particular times

• only keep versions for a small number of
files

10

Operating Systems Lecture 20 page

Self-securing storage

All metadata, directories and critical files (OS
files) are kept on a versioning system.

Any intrusion (that uses files) can be tracked
because the intruder cannot erase changes
they have made to the system.

We need to maintain all versions between
checks for intrusion.

This is referred to as the detection window.

If the system is unable to keep enough
versions we signal an alarm.

Either something has gone wrong, in the sense of not enough
space allocated for a normal amount of usage.

Or someone is trying to force a pruning to hide their tracks.

11 Operating Systems Lecture 20 page

Distributed File Systems

A Distributed File System (DFS) is a file
system which has data stored in several
different sites or hosts (computers and
associated devices) on a network.

Advantages

• greater amount of storage

• greater flexibility for administration and
sharing purposes

• users can log on to any machine and have access to all
of their files

• files can be stored close to where they are normally
used but are still available elsewhere

• can replicate information for greater
reliability

• if a site goes down the files may still be accessible
from another location

12

Operating Systems Lecture 20 page

Accessing Remote Files

Different approaches to providing access to
files over networks.

Remote file transfer approach
• No requirement for the machines to even be running

the same operating system.
• A user can explicitly connect to another machine on

the network and download files. e.g. ftp
• Can’t directly use a file on the remote site.
• We end up with multiple copies and no method of

maintaining consistency.
• The user must know exactly where a file is (including

the host).

Direct access using explicit site names
• Each file is prefixed with a site identifier e.g.

cs26.auckland.ac.nz:/home/robert-s/310exam
• Can use a file directly from another site

but it is usually automatically copied to and fro.
• The user still must know exactly where a file is

located.
• No replication possible.

13 Operating Systems Lecture 20 page

Better methods

It is better if we don’t have to specify the host
name when accessing remote files.

Keep information on each machine pointing to
the machine where the files are actually stored.

• files can be used directly on the remote host
• the user sees no difference between accessing remote

and local files
• remote files may not be visible from all machines on

the network, even if they are, they may have different
pathnames

• moving remote directories entails changes on all local
machines

Keep a server(s) with location information and
associate a standard directory base with all
remote files.

• direct use and the same view of the file system
regardless of where you are logged on from

• can move files without any information needing to be
sent to local machines

• can replicate files

14

Operating Systems Lecture 20 page

Transparency

An ideal – the distributed system should look
like a single machine and associated files.

It is called transparency because the user
should not be able to see the differences (and
complications).

Location transparency
No (obvious) connection between the name of a resource (file)
and its position on the system.

Migration transparency
Resources (files) can move around the system without
programs needing to be changed (or stopped and restarted).
This is similar to what the textbook calls Location
independence - the name doesn't have to be changed with the
location changes.
It needs location transparency to implement.

15 Operating Systems Lecture 20 page

Collections of files

All common distributed file systems group
files into collections for simplicity and
administration purposes.

The collections (component units in the
textbook) are commonly subtrees stemming
from particular directories.

So the subtrees are shared and moved and
replicated together.

If we are going to transparently migrate
component units we need to have a
structure something like this:

Filename space
Some of the

directories are in
the distributed

file
system.

Each
component

 unit references
actual disk
locations

Another
component

unit

Location server.
Every remote

file has at least
two parts: the

component unit
and the file
identifier.

16

Operating Systems Lecture 20 page

Using remote files

Once we have discovered where a file is we
have to move all data accessed from the file
over the network.

This is expensive and has problems with
consistency.

We could:

• send only required blocks back and forth
between the server and the client (remote
service), every file access results in
messages across the network

• keep copying large chunks when required
and cache them at the client

• copy complete files when accessed and
copy back when done (only if written to)

17 Operating Systems Lecture 20 page

Caching

Blocks of files are cached locally.

All accesses come from the cache.

If a block is not in the cache it is requested
from the server and then cached.

Old blocks can be replaced using Least
Recently Used algorithm.

If we modify data in the cache -

• when do we send the information back to
the server?

• write-through – every write requires the block to be
sent back to the server

• delayed-write – send the block to the server at a later
time (check every 30 secs, or when the file is closed or
when the cached block is needed for another block)

• how do we cope with writing to the cache
when other processes (on other sites) also
have the file open?

18

Operating Systems Lecture 20 page

Pros and Cons

caching - usually faster, more efficient, scales
better than remote service

remote service - simpler to implement
because of no consistency problem, uses
less local memory (primary or secondary),
matches local file access

Some systems use both schemes, basically
providing a remote service solution but with
some caching for efficiency reasons.

19 Operating Systems Lecture 20 page

Consistency semantics

The way changes in data get distributed
between processes accessing the same files
is known as consistency semantics.

Two major types:

• UNIX semantics – any change made by any
process is immediately visible to any other
process.

• Session semantics – the process gets a copy
of the file when it is opened and changes
are not visible to other processes until a file
is closed.

Both can be worked with but programmers
need to know which is used on the system
they are programming.

20

Operating Systems Lecture 20 page

Before next time

Read from the textbook
12.8 NFS
17.9 Distributed File Systems
17.1 Advantages of Distributed Systems
17.2 Types of Network-based Operating Systems

21

