
Operating Systems Lecture 18 page

Terminology

The things on the disk that hold information
about files – the textbook calls them file
control blocks FCB.

There are several file tables held in different
types of memory and accessed by different
entities (as we will see).

In this case the on-disk representation that
holds the file information, attributes and
other pointers.

In UNIX this is the inode.

In NTFS this is the MFT file record.

In MS-DOS this is the directory entry.

1 Operating Systems Lecture 18 page

Finding the file blocks

Whether it is in the directory entry or in some
other data structure there must be a place on
the disk which points to the blocks allocated
to each file.

This can be done in many different ways. It
depends on how blocks are allocated to
files.

• Some early file systems always allocated
files in contiguous blocks.

• So only the start block and the number of blocks
needed to be stored. See Fig 12.5.

• Otherwise blocks could be allocated from
all over the device.

• So a table of block usage needs to be held for each
file.

2

Operating Systems Lecture 18 page

Contiguous allocation

• Have to find a large enough hole.
• First fit
• Best fit
• Last fit
• Worst fit
• Buddy algorithm (9.8.1 for memory but same

algorithm)
First fit is commonly used.

• External fragmentation – lots of holes
outside files (and too small to hold bigger
files).

• How much space should be allocated for
each file.

• If we allocate too little it is a pain to increase the size.
• If we allocate too much we are wasting space –

internal fragmentation.

• Extents – collections of contiguous
allocation (NTFS)

3 Operating Systems Lecture 18 page

Linked allocation

The second major method to keep track of the blocks
associated with each file is linked allocation.

A small amount of space is set aside in each block to
point to the next (and sometimes previous as well)
block in the file.

The directory entry holds a pointer to the first block of
the file and probably the last as well.

4

Operating Systems Lecture 18 page

Pros and Cons of linked allocation

Pros
• Simple.

• No external fragmentation.

Cons
• To directly access a particular block, all

blocks leading to it have to be read into
memory. So direct (random) access is slow
(at least until pointer data is stored in
memory).

• Damage to one block can cause the loss of a
large section of the file (or damage to two
blocks if doubly-linked).

We could store the filename and relative block number in
every block.

• Because of the pointers each data block
holds a little less data than it could. Only a
problem with small blocks.

5 Operating Systems Lecture 18 page

MS-DOS & OS2 FAT

The MS-DOS File Allocation Table (FAT) is a
collection of linked lists maintained
separately from the files. One entry for each
block on the disk.

A section of disk holds the table.

Each directory entry holds the block number
of the file’s first block.

This number is also an index into the FAT.

At that index is the block number of the
second block.

This number is also an index into the FAT.

etc…

Over the years the number of bits used to index the FAT
changed (9 to 12 to 16 to 32) as disks got larger. So
the size of the FAT and the maximum number of
allocation units on the disk grew.

6

Operating Systems Lecture 18 page

FAT advantages

Accessing the FAT data for a file requires far fewer disk
accesses than for normal linked access.

One block of FAT data might hold information for
several blocks in the file.

If we have enough memory to cache the entire FAT we
can determine the block numbers for any file with no
extra disk access.

Unfortunately as the FAT gets larger it is more difficult
to cache the whole thing and so it becomes more
common for a single block access to require multiple
FAT block reads.

7 Operating Systems Lecture 18 page

Indexed allocation

A partial way around this is to keep all block
numbers in a contiguous table for each file.

8

Operating Systems Lecture 18 page

Pros and Cons of Indexed Allocation

Pros

• Good for direct access.

• Information for each file is kept in one area.

• No external fragmentation.

Cons

• File size limited by the number of indices in
the index table.

But we can extend this in a number of ways.

• If we lose an index block we have lost
access to a whole chunk of the file.

9 Operating Systems Lecture 18 page

Extending index blocks
If the file has more blocks than we can reference from

the index block we need to have some way of
connecting to more index blocks.

We can link index blocks together (like the linked
allocation of files). Similar pros and cons.

We can have multiple levels of index blocks.

• The first level points to index blocks.

• The second level points to actual blocks.

e.g. If we have blocks of size 8K, a block address of 4
bytes and we have a two level system we can address
files of up to 32 gigabytes.

The indirect index block points to 2048 index blocks.

Each index block points to 2048 actual file blocks.

So we can have 4194304 actual blocks in a file.

How do we find the address of a particular block?

10

Operating Systems Lecture 18 page

UNIX index block scheme

In order to minimise the number of blocks
read to find the actual block (especially
with small files) several versions of UNIX
don’t use extra indirect blocks until
necessary.

NTFS goes one step further and stores small
files < 1K in the MFT file record itself.

11 Operating Systems Lecture 18 page

NTFS Extents
• NTFS keeps all index information in the

MFT. Rather than storing all block numbers it
stores extents.

• A cluster is a number of blocks (2, 4, 8, etc.).
An NTFS volume is seen as an array of
clusters.

• An extent is a start cluster number and a
length (number of clusters).

• e.g.

Diagram from http://www.cs.wisc.edu/~bart/537/lecturenotes/s26.html

Extra MFT entries are used as required.

12

Operating Systems Lecture 18 page

Keeping track of free blocks

Whenever a new block is requested for a file
we need to check to see if there is an empty
block. How do we keep track of all the
empty blocks?

There are lots of them – my 6TB disk with
4KB blocks has about 1.6 billion blocks.

We could link the free ones together like one
large empty file using the linked allocation
method of slide 2.

With a linked list it is trivial to find the first free block.
But it is not efficient if we want several blocks at a time

(especially if we want them to be contiguous).

We can maintain a bitmap (or bit vector).
Where each bit represents a used or free
block (1 represents free).

For my disk this takes up about 200 Megabytes of space.

We can keep a list of start points and lengths.
(like NTFS extents).

13 Operating Systems Lecture 18 page

e.g., UNIX 4.3BSD file system
Early versions of UNIX maintained a device wide

free list of blocks in a stack, whereby the next
allocated block is the most recently returned one.
What are the consequences of this?

Also all inodes were stored in one place.
What are the consequences of this?

Cylinder groups were introduced in order to
improve file access and reliability.

Cylinder groups - one or more consecutive cylinders
(disk head seek time is minimised so access to all
blocks in the same group is fast).  
Inodes and free lists stored with each cylinder
group.  
Each cylinder group has a copy of the superblock
for the "file system" (UNIX terminology for a
partition or disk device.)  
Tries to keep blocks from the same file within
the same cylinder group. But larger files are split
over different cylinder groups.

14

