
Operating Systems Lecture 15 page

Deadlock

Multiple resources introduce the danger of
deadlock.

A circle of processes each holding a resource
wanted by another process in the circle.

It is a local phenomena  
 but it can easily spread.

Can it be cured?

Not without hurting some process.

At least one process must be forced to give up
a resource it currently owns

(or provide a resource e.g. a message, which another process
requires).

1 Operating Systems Lecture 15 page

Conditions for deadlock

Havender's conditions for deadlock(1968) –
7.2.1

• There is a circular list of processes each
wanting a resource owned by another in the
list.

• Resources cannot be shared.

• Only the owner can release the resource

• A process can hold a resource while
requesting another.

One reason deadlock is tricky is that testing
may not discover it. It depends on the order
of requests and allocations.

2

Operating Systems Lecture 15 page

Deadlock detection

Resource graphs – 7.2.2

All resources and processes are vertices in the
graph.

Allocations and requests are edges.

circles are processes, squares are resources

Cycles in the graph indicate deadlock (if each
square holds one copy of the resource). It gets
more complicated with multiple resources of
the same type.
When should the deadlock detection
algorithms run?

!How often do we expect deadlock?
!How many processes are usually affected?

3 Operating Systems Lecture 15 page

Someone has to suffer

What do we do when deadlock is detected?

Remove a process
One of the processes in the circle can be selected and

removed. Its resources are returned and the deadlock is
broken.

We could use priority or age to select the process.
It may not solve the problem (deadlock may occur again

immediately)

Remove all processes involved
Overkill but certainly solves the problem

Force a process to restart (or rollback to some
safe state)

If we want to rollback, the system needs to maintain
checkpoints where the processes can be restarted from.

We must ensure that the same process is not selected for
restarting repeatedly.

4

Operating Systems Lecture 15 page

Deadlock Prevention

We make sure at least one of the conditions
will not be met. i.e. It is impossible for
deadlock to occur if we use prevention.

There is a circular list of processes each
wanting a resource owned by another in the
list.

All resources must be issued in a specific order  
if you have one of these you can't go back and
request one of those.

an alternative
allow requests from earlier in the ordering if all

resources later than this are returned first.

Resources cannot be shared.  
Make them sharable?  
Virtual devices - printer spooling

5 Operating Systems Lecture 15 page

Deadlock prevention

Only the owner can release the resource
Forcibly remove - but that causes damage
or
if a new resource is currently busy release all currently

held resources and try to get them back with the new
one as well (the earlier resources may hence be removed)

or
if removing the resource temporarily does no harm, e.g. a page

of memory or use of the CPU (state is saved and restored)

A process can hold a resource while requesting
another.

Only allow one resource at a time?
or
Return a group of resources before requesting another

group
or
Allocate all resources at once  

can't ask for more as the process runs

6

Operating Systems Lecture 15 page

Deadlock avoidance

Before granting requests we check if deadlock
could occur if we allocate this resource to
this process. “I can see deadlock might
happen if I allow that. So I won’t allow
that.”

This may stop a process from getting a
resource even though the resource is
available.  
But doing so leads to a situation which
could cause deadlock later.  
So avoidance prevents deadlock too - but
dynamically as the processes run.

System knows who has what.  
But doesn't usually know who wants what -
has to use a very conservative strategy.  
Worst case scenarios of future resource
requests.

See section 7.5.2 for a simple algorithm (one
of each type of resource).

7 Operating Systems Lecture 15 page

Deadlock avoidance (cont.)

e.g. Two processes P and Q and two units of
the same resource R.  
Trouble only develops if both P and Q both
require 2 Rs.

Obviously no problem if they each only want
one R.  
If P wants two Rs and Q has one (and
doesn't want anymore), then P has to wait
until Q releases its R.  
  
Deadlock only occurs when they both have
one and both want one more.

In this case the avoidance algorithm should not
allow an allocation to the other process
when one process already has an R.

8

Operating Systems Lecture 15 page

The Banker’s algorithm

Dijkstra invented a deadlock avoidance
algorithm known as the Banker’s algorithm.

• suppose that the request has been granted

• repeat until no more processes can be
finished
search for a process which can be given all its resources
return all that process's resources to the system

• If all the processes can be removed then the
state is safe and the allocation can go ahead.

9 Operating Systems Lecture 15 page

Banker’s example

e.g.  
Two processes and two types of resource.  
Two units of each resource.

Disadvantages
We don't usually know the maximum
resource requirements of each process.  
Even if we do, this algorithm has to be
performed every time a process requests a
resource.

10

Operating Systems Lecture 15 page

Distributed deadlock

As is usual, everything gets just a bit more
complicated when dealing with distributed
systems.

We can still prevent deadlock by resource
ordering.

Or we can prevent deadlock by process
ordering, only allowing processes with
higher priorities to wait for resources.
Processes with lower priorities get rolled
back.

• But this quickly leads to starvation.

Or we can avoid deadlock by the Banker's
algorithm, use one process as the banker:

• Even more expensive.
More processes, more resources, all requests have to be

checked by a Banker process.

11 Operating Systems Lecture 15 page

Time-stamp prevention methods

We prevent a cycle by only allowing older
processes to wait for resources held by
younger ones or vice versa. Rather than
resource ordering this is process ordering.

wait-die

Process A requests a resource held by process B  
If process A is older than process B it waits
for the resource.  
Otherwise process A restarts, process B (the
older) continues.

Older processes hang around in the system
(they have done more work). Age has its
privileges.

Younger processes may have to restart multiple
times, the resource might still be busy (but
they eventually get old too, they retain their
original timestamps).

12

Operating Systems Lecture 15 page

Another time-stamp method

wound-wait

Once again A wants a resource held by B.

If A is older than B it takes the resource and B
restarts.  
Otherwise A (the younger) waits for B to
release the resource.

Old processes never wait for anything. Age
really has its privileges.

Less restarts.

In both cases processes keep their timestamps
even when restarted.  
Eventually they are really old and will not
have to restart.

Either way lots of unnecessary restarts.

13 Operating Systems Lecture 15 page

Distributed deadlock detection

Each processor keeps track of the resource
allocation graph to do with its local
resources.  
May include remote processes.  
Cycles don't just occur locally.  
Need to check the union of resource
allocation graphs.

A B

C

B D

C

Site 1 Site 2

A B

C
D

Global deadlock

14

Operating Systems Lecture 15 page

DDD (cont.)

Centralized deadlock detection process.

Information may have changed by the time the
data from the last machine is gathered, the
data from the first machine is probably out
of date.

Graph is only an approximation of the real
allocation of resources and requests.  
If there is deadlock it will be detected, but it
is possible to detect deadlock when it
doesn't exist.

Timestamps can be used to avoid false
deadlock detection.

15 Operating Systems Lecture 15 page

Avoiding false cycle detection

When process A at site 1, requests a resource
from process B, at site 2, a request message
with a timestamp is sent.

The edge A → B with the timestamp is inserted
in the local graph of 1. The edge with the
timestamp is inserted in the graph of 2 only
if 2 has received the request message and
cannot immediately grant the requested
resource.

The deadlock detection controller asks all sites
for their wait-for graphs.

For requests between sites, the edge is inserted
in the global graph if and only if it appears
in more than one local graph (with the same
timestamp).

16

Operating Systems Lecture 15 page

Distributed approach

There is an extra node (Pex) in each local wait-
for graph.

All local processes waiting on any external
processes point to Pex.

Any local processes waited on by an external
process are pointed to by Pex.

If a cycle with Pex involved is found we have a
possible deadlock and information is sent to
the site waited on.

If a deadlock is then found then it is handled.

If another possible deadlock is found involving
Pex another message is sent to another site
etc.

Until either deadlock is detected or there is no
cycle.

17 Operating Systems Lecture 15 page

Before next time

Read from the textbook
11.1 File Concept
11.2 Access Methods

If you are interested in the internals of NTFS
try

 http://technet.microsoft.com/en-us/library/
cc976808.aspx

18

