
Operating Systems Lecture 12 page

The Dining Philosophers

!A philosopher thinks and eats.
!5 philosophers sitting around a table.
!5 forks - 1 shared between each pair of
philosophers.
!A philosopher needs the fork on either side in
order to eat.
!We don’t really want philosophers starving to
death.

1 Operating Systems Lecture 12 page

First solution

First attempted solution with semaphores.

left and right are semaphores for this
philosopher's forks.

A philosopher does this:

 loop do
 think
 eat
 end

 def eat
 status = "waiting"
 right.wait
 left.wait
 status = "eating"
 right.signal
 left.signal
 end

What goes wrong?

2

Operating Systems Lecture 12 page

Second solution

def eat
 status = "waiting"
 simultaneous_wait(left, right)
 status = "eating"
 simultaneous_signal(left, right)
end

The simultaneous Wait and Signal operations
are supposed to be atomic and block the
thread until both forks are free.

No more deadlock. But the problem is still not
solved.

Solutions:
• only allow 4 philosophers to pick up forks at any time
• even philosophers pick up their right forks first, odd

philosophers pick up their left
• forks must be picked up lowest number first - so

philosopher 4 waits for 0 first then 4 (i.e. right then
left)

• These last two solutions seem to break the rules to me.

3 Operating Systems Lecture 12 page

Simultaneous wait

We can implement a simultaneous wait with
the “try lock” operation and a way of
breaking out of a loop.

A “try lock” operation tries to gain the lock. If
it fails the thread doesn’t block. It returns
true only if the lock is granted.

left and right are simple locks (Mutexes)

 # Time to eat
 def eat
 status = "waiting"
 loop do
 right.lock
 exitloop if left.try_lock
 right.unlock
 end
 status = "eating"
 left.unlock
 right.unlock
 end

4

Operating Systems Lecture 12 page

So just to be safe

1. Assume that threads can be interleaved at
any point. Protect all access to shared data
with synchronization.

2. Do not require that threads be interleaved
at some point. If you need guaranteed
progression between different threads you
must code it explicitly using
synchronisation.

5 Operating Systems Lecture 12 page

Equivalence of solutions

To show that one concurrency construct (e.g.
semaphores) is equivalent to another (e.g. monitors)
we need to build each using the other.

e.g. semaphores can be easily implemented with
monitors

monitor Semaphore

 def initialize(count)
 s = count
 queue = new_condition_var
 end

 def signal
 s += 1
 if s < 1
 queue.signal // condition variable
 end
 end

 def sem_wait
 s -= 1
 if s < 0
 queue.wait // condition variable
 end
 end

end

6

Operating Systems Lecture 12 page

And the other way around

• A semaphore initialised to 1 is used to guard
entrance to the monitor.

• Wait on entry, normally signal on exit.

Condition variables complicate things

• Associate a semaphore with each condition
variable.

• Only signal the semaphore when something
is actually waiting.

• Need some way of querying the semaphore
queue - a common addition.

• Or else keep track of this ourselves as well
(no worries about mutual exclusion).

• If we wake up a thread waiting on a
condition variable we don’t signal the
entrance semaphore as we leave.

7 Operating Systems Lecture 12 page

Lock-free algorithms

Another approach is to code so that we don't
need locks.

This is difficult – so we use standard lock free
libraries of stacks, queues, sets, etc.

They usually rely on a compare and swap type
instruction (similar to test and set).

cas(address, old, new)

If the current value at the address is the same as
the old value then it replaces it with the new
value and returns true.

It returns false if the current value is not the old
value.

8

Operating Systems Lecture 12 page

Lock free modification

add_to_balance(increase):
previous_amount = balance
while (!cas(&balance,
 previous_amount,
 previous_amount + increase))
 previous_amount = balance

No matter how many threads are accessing this
code they will never block.

This is not a wait-free algorithm as it is possible
that a thread may stay looping indefinitely.

There are ways of making sure the wait is
bounded. Then it is wait-free as well as lock
free.

Many wait-free algorithms increase in memory
size as the number of threads increases.

There is also the hope of Transactional Memory.

9 Operating Systems Lecture 12 page

Messages

Passing messages can also be used to control
concurrency.

Two (main) ways to send information from one process
to another

1. Shared resource
2. Message passing

Message Passing  
Needs:

• Some way of addressing the message.
• Some way of transporting the message.
• Some way of notifying the receiver that a message has

arrived.
• Some way of accessing or depositing the message in the

receiver.

May look like:
send(destination, message)
receive(source, message)

Or:
write(message)
read(message)

In this case we also need some way of making a
connection between the processes, like an open call.

10

Operating Systems Lecture 12 page

Design decisions

Should the sender block until the message is received?  
Should the receiver block until the message is
received?

What are advantages and disadvantages of blocking or
not blocking?

• Blocking reader seems natural.

• Blocking writer slows writer thread.
• But doesn't require message buffering.

• Non-blocking writers might have to be blocked in
some cases.

• If both block we have synchronous communication -
rendezvous.

Should communication be one way or two way?

• Client/server requires two way

11 Operating Systems Lecture 12 page

Design decisions

Should the system have message “types”. i.e., The
sender can specify the type of message it is sending
and the receiver can specify the type of message it
wants to receive.

 send(destination, type, data)

Should the receiver be able to wait for more than one
type simultaneously.

 message = receive(type1,type2, ...)

Some systems include extra conditions on message
reception as well, normally known as “guards”.

12

Operating Systems Lecture 12 page

Storing the message

• We want to minimise the amount of
copying.

Move it straight from the sender to the receiver's address
space.

Pass a pointer (sender cannot alter until it is received).

• Buffer the message in the system.
 if a fixed size - reject or block senders

Message size
• should there be a fixed size? (packet or page size)

13 Operating Systems Lecture 12 page

Direct communication

Process to process

• address - name or id of the other process

• one link between each pair of processes

• receiver doesn't have to know the id of the
sender (it can receive it with the message)

So a server can receive from a group of processes

Disadvantages  
Can't easily change the names of processes.  
 could lead to multiple programs needing
to be changed.

14

Operating Systems Lecture 12 page

Indirect communication

Mailboxes or Ports

Mailbox ownership

• Owned by the system
• survives even without processes

• Owned by a process
• the one which created it - usually the process which

can receive from it
• the creator can pass on the ability to receive
• mailbox is removed when the process finishes

15 Operating Systems Lecture 12 page

Mach ports

Underneath Mac OS X

• everything done via ports even system calls
and exception handling

• only one receiver from each port

• can pass the right to receive

• when a process is started it is given send
rights to a port on the bootstrap process (the
service naming daemon) (and it normally
gives the bootstrap process send rights via a
message)

• programmers don’t usually work at that
level (they can use the standard UNIX
communication mechanisms)

16

Operating Systems Lecture 12 page

UNIX process communication

Signals – software interrupts

kill(pid, signalNumber)

originally for sending events to the process because it
had to stop.

signalNumbers for:
• illegal instructions
• memory violations
• floating point exceptions
• children finishing
• job control

But processes can catch and handle signals with signal
handlers.  
signal(signalNumber, handler)

Can also ignore or do nothing.  
If you don't ignore or set a handler then getting a
signal stops the process.

One signal can't be handled - 9 SIGKILL

• broken communication
• keyboard interruption
• loss of terminal
• change of window size
• user defined etc

17 Operating Systems Lecture 12 page

Before next time

Read from the textbook
3.6.1 Sockets

18

