Runnable

On a single processor only one process/thread
can run at a time.
Many may however be runnable - either
running or ready to run.

Running Ready to run

Runnable
I

.J

Finishing Being created

Waiting

Operating Systems Lecture 07 page 1

Cooperative multitasking

Two main approaches
1. aprocess yields its right to run
2. system stops a process when it makes a system call

This does NOT mean a task will work to
completion without allowing another
process to run. e.g. Macintosh before OS X
and early versions of Windows

A mixture

Older versions of UNIX (including versions of
Linux before 2.6) have not allowed
preemptive multitasking when a process has
made a system call.

Operating Systems Lecture 07 page 3

Preemptive multitasking

A clock interrupt causes the OS to check to see
if the current thread should continue
Each thread has a time slice
How is the time slice allocated?

What advantages/disadvantages does
preemptive multitasking have over
cooperative multitasking?

Advantages
+ control
+ predictability

Disadvantages
* critical sections
« efficiency

Operating Systems Lecture 07 page 2

Context switch

The change from one process running to
another one running on the same processor
is usually referred to as a "context switch".

What is the context?
* registers

* memory - including dynamic elements such as the call
stack

« files, resources

* but also things like caches, TLB values - these are
normally lost

The context changes as the process executes.

But normally a "context switch" means the
change from one process running to another,
or from a process running to handling an
interrupt. Whenever the process state has to
be stored and restored.

Operating Systems Lecture 07 page 4

Context switch (cont.)

process P, operating system process P,

interrupt or system call

executing J-L
T7 save state into PCB,,
reload state from PCB, 1

interrupt or system call

v
save state into PCB,

J reload state from PCB

idle

> idle

executing

idle

executing U

Operating Systems Lecture 07 page 5

Waiting

Processes seldom have all the resources they
need when they start

memory
* data from files or devices e.g. keyboard input

Waiting processes must not be allowed to
unnecessarily consume resources, in
particular the processor.

* state is changed to waiting

may be more than one type of waiting state

short wait e.g. for memory

long wait e.g. for an archived file (see suspended below)

* removed from the ready queue

* probably entered on a queue for whatever it is waiting

for

when the resource becomes available

state is changed to runnable
* removed from the waiting queue

* put back on the runnable queue

Operating Systems Lecture 07 page 7

Returning to running

State transition

* Must store process properties so that it can
restart where it was.

» If changing processes the page table needs
altering.

¢ Rest of environment must be restored.

 If changing threads within the same process
simply restoring registers might be enough.

Some systems have multiple sets of registers
which means that a thread change can be
done with a single instruction.

Operating Systems Lecture 07 page 6

Suspended

Another type of waiting
ctrl-z in some UNIX shells

Operators or OS temporarily stopping a
process — i.e. it is not (usually) caused by
the process itself

¢ allows others to run to completion more rapidly

¢ orto preserve the work done if there is a system

problem

or to allow the user to restart the process in the

background etc.

Suspended processes are commonly swapped
out of real memory.

This is one state which affects the process, individual threads
aren't swapped out. Why not?

See infinite.cor infinite.py and use ctrl-z, then do
ps

to resume you type £g (foreground), also play with the jobs
command

ctrl-z sends the same signal as
os.kill(pid, signal.SIGSTOP)

Operating Systems Lecture 07 page 8

Why we don’t use Java suspend()

If dealing with threads in Java we don’t use
these deprecated methods:

suspend () freezes a thread for a while. This
can be really useful.

resume () releases the thread and it can start
running again.

But we can easily(?) get deadlock.
suspend () keeps hold of all locks gathered by the thread.

If the thread which was going to call resume () needs one of
those locks before it can proceed we get stuck.

Operating Systems Lecture 07 page 9

Waiting in UNIX

A process waiting is placed on a queue.

The queue is associated with the hash value of
a kernel address
(waiting or suspended processes may be swapped out)
when the resource becomes available
* originally used to scan whole process table
¢ all things waiting for that resource are woken up

(may need to swap the process back in)

* first one to run gets it

* if not available when a process runs the process goes
back to waiting

a little like in Java

while (notAvailable)

wait () ;

Operating Systems Lecture 07 page 11

Java threads and “stop”

Why we don’t use stop()

stop () Kkills a thread forcing it to release any
locks it might have.

We will see where those locks come from in later lectures.

The idea of using locks is to protect some
shared data being manipulated
simultaneously.

If we use stop () the data may be left in an
inconsistent state when a new thread
accesses it.

Operating Systems Lecture 07 page 10

Finishing

All resources must be accounted for

may be found in the PCB or other tables
e.g. devices, memory, files

reduce usage count on shared resources

memory, libraries, files/buffers
(can this shared library be released from memory now?)

if the process doesn't tidy up e.g. close files,
then something else must

accounting information is updated

remove any associated processes

Was this a session leader? If so then should all processes in the
same session be removed?

remove the user from the system
notify the relatives?

Operating Systems Lecture 07 page 12

UNIX stopping

Two reasons to stop

Stopping normally

must call an exit routine

¢ this does all the required tidying up

What if it doesn't call exit and just doesn't have a next

i0on

it (terminat

* Usually call ex

instruction?
Forced stops

status)
* open files are closed - inc

ing devices

lud

Only certain processes can stop others

memory is

parents

freed

* owned by the same person

ing updated

account

same process group

Why do they do it?

zombie"
init" as a step-

state becomes "
* children get

parent

n

* work no longer needed

1t 1s waiting or

* somehow gone wrong

® parent is signalled (in case

* user got bored waiting for completion

will wait)
* after the parent retrieves the termination

OS also stops processes

* usually when something has gone wrong

status the PCB is freed

exceeded time
* tried to access some prohibited resource

Cascading termination

Some systems don't allow child processes to continue

when the parent stops

Lecture 07 page 14

Operating Systems

Lecture 07 page 13

Operating Systems

Info from a Linux process table

ps -e -o s,uid,pid,ppid,group,sess,c,pri,ni,rss,sz:7,wchan:30,tty,time,cmd

UNIX state diagrams

prdd‘prd‘prn’s o- o- sd
[1:0/393x0mM3]
[z:1/30%70my]

useq

s- 1obed

sd uew

useq

z8d8y-A3d-suwoub
TeuTwIa3-suUOUb
B-xnuTT-$9 98X/qTT/IsN/
T-79 98%/qTT/Isn/ o- ys
n/dToeb-n3unqn/qrT/Isn/
n72086/80T0006/qTT/ A0/
B-XnUTT-p9 98%/qTT/Isn/
b-XnUTT-p9~ 98X/qTT/ISN/
T-%9 98%/qTT/Isn/ o= us
33Y-ps3ab/s3ab/qrT/asn/
deqam-A3TUNQTT/qTT/ISN/
q/asn/ guoyskd/utq/asn/
z9TITI0U-93EPdN
IeaesusaI0S-swOUD

[zadTayy]
[39sndo]
[HO:1/x0%70m]
[1/uoT3eabTH]
[1/pbxTagosy]
[1/60pyo3en]
[0/Bopyo3en]
[poyos nox]
[yq nox]
[o/uoT3eabrul
tn/z0%z0MY]
20/30%70MY]
[0/pbxTagOSY]
[ppeaxyax]
ATuT/uTas/
and

003003
00:00%
00:00%
003003
00:00%
00:00%
003003
00300
11:00
00300
00300
00300
00300
00300
00300
00300
00300
00300
6€300
00300
00300
00
003

00

00

00

00

00

00

00

00

00

00

00
00:00%
103003
AWIL

g/53d

¢
g/53d
z/s3d
z/s3d
z/53d

2 N N N S ST A P VY

Bl

Fork

pea1yy” T9xIOM

peaIy; I9yIOM

ITes

peox K33 u

aten

ITes

bswaoer wear3s XTun
JnosuTy “aTnpayos” TTod
InosuTy @Tnpayos TT0d
3tes

JnosuTy aTnpayos TTod
InosuTy @Tnpayos TT0d
3noswTy eTnpayos TTod
Jnoswty aTnpayos Trod
ITes

3noswTy aTnpayos TTod
Jnoswty aTnpayos Trod
InosuTy @Tnpayos TTod
3nosuTy eTnpayos TTod
Jnoswty aTnpayos Trod

peaIyy I9MOSaIT
peaiyy Tonosax
peaiyy TexIOM
peoryy raddors ndo
uz peary3 jooqdus
u3z”peaxy3 jooqdus
uzpeays 300qdus
peaxyay d6 nox
peaxyay db nox
peoryy roddors ndo
peayy T9)IOM
peaiyy TexION

uz peays 300qdus
pPeaIYIY

Jnosury eTnpayas TTod
NVHOM

ugh Memory

(Swapping System Only)

Enough
Memory

to User,

Return

System Call,
Interrupt

1995

0

0

0z59
£vve
2855
0z59
80LE
€0G€ST
L886%
0TTT
21298
26909
€L6TTT
L886%
oTTT
7E9€ST
91069
STLO9T
£5262T
69ZL6

cococococococoooooo

°

00L9

00€T

poTE
266
yZsT
9T0¢
vv8
80252
(4343
vz9
vvLL
8909
vv8Y
(4343
829
8868
09LE
081921
ZE6ET
9€9€2

cococococococoooooo

7892
ssa

e
]
2
3

coccocooococococooocoococooo0o0o

coccococoocococcooocoooo00o00o

VUococooocoococooooooo

€667 3I9907 £667 889E

0 3001 Z TL9E

0 3001 7 s9s€

€667 3T9907 LT6Z €667

9767 379901 LL6T L86T

9z6z 319901 9267 LL6T

9267 3I9907 L16Z 9T6T

8vET dwan L1627 $Z6T

8VET 3I9q0X T L162

€0YT 3I990 TLEZ TLET

€0%T 319901 89E€T TLET

€0¥T 3I9q0I T 89€2

€0vT 3T9q0T T v9€T

8YET 379907 8HET GOET

€0¥T 3I2901 8LZZ 6LTT

€0vT 3I9907 89ZZ 8LZT

€0%T 3I9q0x1 T 892Z

€0¥T 3I9q0I T (2311

8YET 3T9q0X T 6€TZ

8VET 3I9q0x BYET 1ZIT

8VET 319901 BYET 8607
poscuex sassesoxd 3o

0 3001 T 8T

0 3001 7 L1

0 3001 7 9T

0 3001 7 vT

0 3001 Z €1

0 3001 7 21

0 3001 7 1T

0 3001 7 ot

0 3001 7 6

0 3001 z 8

0 3001 7 L

0 3001 7 s

0 3001 z €

0 3001 0 z

T 300z o T

ssas dno¥d d1dd did

000T

000T
000T
0001
000T
000T
0001
000T
000T
0001
000T
000T
0001
000T
000T
0001
000T
0001
000T

s30T -

Aococococococococoooooo

lhnunnnunnnnonnnnnnn oo

NOuONnnNNNDNn NN 0o

Lecture 07 page 16

Operating Systems

Lecture 07 page 15

Operating Systems

Before next time

Read from the textbook
6.1 Basic Concepts

6.2 Scheduling Criteria

6.3 Scheduling Algorithms

6.5 Multiple-Processor Scheduling

Operating Systems Lecture 07 page 17

