Runnable

On a single processor only one process/thread
can run at a time.
Many may however be runnable - either
running or ready to run.

Running Ready to run

Runnable
I

.J

Finishing Being created

Waiting

Operating Systems Lecture 07 page 1

Cooperative multitasking

Two main approaches
1. aprocess yields its right to run
2. system stops a process when it makes a system call

This does NOT mean a task will work to
completion without allowing another
process to run. e.g. Macintosh before OS X
and early versions of Windows

A mixture

Older versions of UNIX (including versions of
Linux before 2.6) have not allowed
preemptive multitasking when a process has
made a system call.
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Preemptive multitasking

A clock interrupt causes the OS to check to see
if the current thread should continue
Each thread has a time slice
How is the time slice allocated?

What advantages/disadvantages does
preemptive multitasking have over
cooperative multitasking?

Advantages
+ control
+ predictability

Disadvantages
* critical sections
« efficiency
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Context switch

The change from one process running to
another one running on the same processor
is usually referred to as a "context switch".

What is the context?
* registers

* memory - including dynamic elements such as the call
stack

« files, resources

* but also things like caches, TLB values - these are
normally lost

The context changes as the process executes.

But normally a "context switch" means the
change from one process running to another,
or from a process running to handling an
interrupt. Whenever the process state has to
be stored and restored.

Operating Systems Lecture 07 page 4



Context switch (cont.)

process P, operating system process P,

interrupt or system call

executing J-L
T7 save state into PCB,,
reload state from PCB, 1

interrupt or system call

v
save state into PCB,

J reload state from PCB

idle

> idle

executing

idle

executing U
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Waiting

Processes seldom have all the resources they
need when they start

memory
* data from files or devices e.g. keyboard input

Waiting processes must not be allowed to
unnecessarily consume resources, in
particular the processor.

* state is changed to waiting

may be more than one type of waiting state

short wait e.g. for memory

long wait e.g. for an archived file (see suspended below)

* removed from the ready queue

* probably entered on a queue for whatever it is waiting

for

when the resource becomes available

state is changed to runnable
* removed from the waiting queue

* put back on the runnable queue
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Returning to running

State transition

* Must store process properties so that it can
restart where it was.

» If changing processes the page table needs
altering.

¢ Rest of environment must be restored.

 If changing threads within the same process
simply restoring registers might be enough.

Some systems have multiple sets of registers
which means that a thread change can be
done with a single instruction.
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Suspended

Another type of waiting
ctrl-z in some UNIX shells

Operators or OS temporarily stopping a
process — i.e. it is not (usually) caused by
the process itself

¢ allows others to run to completion more rapidly

¢ orto preserve the work done if there is a system

problem

or to allow the user to restart the process in the

background etc.

Suspended processes are commonly swapped
out of real memory.

This is one state which affects the process, individual threads
aren't swapped out. Why not?

See infinite.cor infinite.py and use ctrl-z, then do
ps

to resume you type £g (foreground), also play with the jobs
command

ctrl-z sends the same signal as
os.kill(pid, signal.SIGSTOP)
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Why we don’t use Java suspend()

If dealing with threads in Java we don’t use
these deprecated methods:

suspend () freezes a thread for a while. This
can be really useful.

resume () releases the thread and it can start
running again.

But we can easily(?) get deadlock.
suspend () keeps hold of all locks gathered by the thread.

If the thread which was going to call resume () needs one of
those locks before it can proceed we get stuck.

Operating Systems Lecture 07 page 9

Waiting in UNIX

A process waiting is placed on a queue.

The queue is associated with the hash value of
a kernel address
(waiting or suspended processes may be swapped out)
when the resource becomes available
* originally used to scan whole process table
¢ all things waiting for that resource are woken up

(may need to swap the process back in)

* first one to run gets it

* if not available when a process runs the process goes
back to waiting

a little like in Java

while (notAvailable)

wait () ;
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Java threads and “stop”

Why we don’t use stop()

stop () Kkills a thread forcing it to release any
locks it might have.

We will see where those locks come from in later lectures.

The idea of using locks is to protect some
shared data being manipulated
simultaneously.

If we use stop () the data may be left in an
inconsistent state when a new thread
accesses it.
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Finishing

All resources must be accounted for

may be found in the PCB or other tables
e.g. devices, memory, files

reduce usage count on shared resources

memory, libraries, files/buffers
(can this shared library be released from memory now?)

if the process doesn't tidy up e.g. close files,
then something else must

accounting information is updated

remove any associated processes

Was this a session leader? If so then should all processes in the
same session be removed?

remove the user from the system
notify the relatives?
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UNIX stopping

Two reasons to stop

Stopping normally

must call an exit routine

¢ this does all the required tidying up

What if it doesn't call exit and just doesn't have a next

i0on

it (terminat

* Usually call ex

instruction?
Forced stops

status)
* open files are closed - inc

ing devices

lud

Only certain processes can stop others

memory is

parents

freed

* owned by the same person

ing updated

account

same process group

Why do they do it?

zombie"
init" as a step-

state becomes "
* children get

parent

n

* work no longer needed

1t 1s waiting or

* somehow gone wrong

® parent is signalled (in case

* user got bored waiting for completion

will wait)
* after the parent retrieves the termination

OS also stops processes

* usually when something has gone wrong

status the PCB is freed

exceeded time
* tried to access some prohibited resource

Cascading termination

Some systems don't allow child processes to continue

when the parent stops
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Info from a Linux process table

ps -e -o s,uid,pid,ppid,group,sess,c,pri,ni,rss,sz:7,wchan:30,tty,time,cmd
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Before next time

Read from the textbook
6.1 Basic Concepts

6.2 Scheduling Criteria

6.3 Scheduling Algorithms

6.5 Multiple-Processor Scheduling
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