
Operating Systems Lecture 07 page

Runnable

On a single processor only one process/thread
can run at a time.  
Many may however be runnable - either
running or ready to run.

Ready to runRunning

1 Operating Systems Lecture 07 page

Preemptive multitasking

A clock interrupt causes the OS to check to see
if the current thread should continue  
Each thread has a time slice  
How is the time slice allocated?

What advantages/disadvantages does
preemptive multitasking have over
cooperative multitasking?

Advantages
• control
• predictability

Disadvantages
• critical sections
• efficiency

2

Operating Systems Lecture 07 page

Cooperative multitasking

Two main approaches
1. a process yields its right to run
2. system stops a process when it makes a system call

This does NOT mean a task will work to
completion without allowing another
process to run. e.g. Macintosh before OS X
and early versions of Windows

A mixture

Older versions of UNIX (including versions of
Linux before 2.6) have not allowed
preemptive multitasking when a process has
made a system call.

3 Operating Systems Lecture 07 page

Context switch

The change from one process running to
another one running on the same processor
is usually referred to as a "context switch".

What is the context?
• registers
• memory - including dynamic elements such as the call

stack
• files, resources
• but also things like caches, TLB values - these are

normally lost

The context changes as the process executes.

But normally a "context switch" means the
change from one process running to another,
or from a process running to handling an
interrupt. Whenever the process state has to
be stored and restored.

4

Operating Systems Lecture 07 page

Context switch (cont.)

5 Operating Systems Lecture 07 page

Returning to running

State transition

• Must store process properties so that it can
restart where it was.

• If changing processes the page table needs
altering.

• Rest of environment must be restored.

• If changing threads within the same process
simply restoring registers might be enough.

Some systems have multiple sets of registers
which means that a thread change can be
done with a single instruction.

6

Operating Systems Lecture 07 page

Waiting

Processes seldom have all the resources they
need when they start
• memory
• data from files or devices e.g. keyboard input

Waiting processes must not be allowed to
unnecessarily consume resources, in
particular the processor.
• state is changed to waiting

may be more than one type of waiting state
short wait e.g. for memory
long wait e.g. for an archived file (see suspended below)

• removed from the ready queue
• probably entered on a queue for whatever it is waiting

for
when the resource becomes available

• state is changed to runnable
• removed from the waiting queue
• put back on the runnable queue

7 Operating Systems Lecture 07 page

Suspended

Another type of waiting
ctrl-z in some UNIX shells
Operators or OS temporarily stopping a

process – i.e. it is not (usually) caused by
the process itself
• allows others to run to completion more rapidly
• or to preserve the work done if there is a system

problem
• or to allow the user to restart the process in the

background etc.
Suspended processes are commonly swapped

out of real memory.
This is one state which affects the process, individual threads

aren't swapped out. Why not?

See infinite.c or infinite.py and use ctrl-z, then do
ps

to resume you type fg (foreground), also play with the jobs
command

ctrl-z sends the same signal as
os.kill(pid, signal.SIGSTOP)

8

Operating Systems Lecture 07 page

Why we don’t use Java suspend()

If dealing with threads in Java we don’t use
these deprecated methods:

suspend() freezes a thread for a while. This
can be really useful.

resume() releases the thread and it can start
running again.

But we can easily(?) get deadlock.
suspend() keeps hold of all locks gathered by the thread.
If the thread which was going to call resume() needs one of

those locks before it can proceed we get stuck.

9 Operating Systems Lecture 07 page

Java threads and “stop”

Why we don’t use stop()

stop() kills a thread forcing it to release any
locks it might have.

We will see where those locks come from in later lectures.

The idea of using locks is to protect some
shared data being manipulated
simultaneously.

If we use stop() the data may be left in an
inconsistent state when a new thread
accesses it.

10

Operating Systems Lecture 07 page

Waiting in UNIX

A process waiting is placed on a queue.
The queue is associated with the hash value of

a kernel address
(waiting or suspended processes may be swapped out)
when the resource becomes available

• originally used to scan whole process table
• all things waiting for that resource are woken up
• (may need to swap the process back in)
• first one to run gets it
• if not available when a process runs the process goes

back to waiting
a little like in Java
while (notAvailable)  
wait();

11 Operating Systems Lecture 07 page

Finishing

All resources must be accounted for
may be found in the PCB or other tables  

e.g. devices, memory, files
reduce usage count on shared resources
memory, libraries, files/buffers  

(can this shared library be released from memory now?)
if the process doesn't tidy up e.g. close files,

then something else must
accounting information is updated
remove any associated processes
Was this a session leader? If so then should all processes in the

same session be removed?
remove the user from the system
notify the relatives?

12

Operating Systems Lecture 07 page

Two reasons to stop

Stopping normally
• must call an exit routine
• this does all the required tidying up

What if it doesn't call exit and just doesn't have a next
instruction?

Forced stops
Only certain processes can stop others

• parents
• owned by the same person
• same process group

Why do they do it?
• work no longer needed
• somehow gone wrong
• user got bored waiting for completion

OS also stops processes
• usually when something has gone wrong
• exceeded time
• tried to access some prohibited resource

Cascading termination  
Some systems don't allow child processes to continue
when the parent stops

13 Operating Systems Lecture 07 page

UNIX stopping

• Usually call exit(termination
status)

• open files are closed - including devices
• memory is freed
• accounting updated
• state becomes "zombie"
• children get "init" as a step-parent
• parent is signalled (in case it is waiting or

will wait)
• after the parent retrieves the termination

status the PCB is freed

14

Operating Systems Lecture 07 page

UNIX state diagrams

15

S

U
I
D

P
I
D

P
P
I
D

G
R
O
U
P

S
E
S
S

C

P
R
I

N
I

R
S
S

S
Z

W
C
H
A
N

T
T

T
I
M
E

C
M
D

S

0

1

0

r
o
o
t

1

0

1
9

0

2
6
8
4

6
7
0
0

p
o
l
l
_
s
c
h
e
d
u
l
e
_
t
i
m
e
o
u
t

?

0
0
:
0
0
:
0
1

/
s
b
i
n
/
i
n
i
t

S

0

2

0

r
o
o
t

0

0

1
9

0

0

0

k
t
h
r
e
a
d
d

?

0
0
:
0
0
:
0
0

[
k
t
h
r
e
a
d
d
]

S

0

3

2

r
o
o
t

0

0

1
9

0

0

0

s
m
p
b
o
o
t
_
t
h
r
e
a
d
_
f
n

?

0
0
:
0
0
:
0
0

[
k
s
o
f
t
i
r
q
d
/
0
]

S

0

5

2

r
o
o
t

0

0

3
9

-
2
0

0

0

w
o
r
k
e
r
_
t
h
r
e
a
d

?

0
0
:
0
0
:
0
0

[
k
w
o
r
k
e
r
/
0
:
0
H
]

S

0

7

2

r
o
o
t

0

0

3
9

-
2
0

0

0

w
o
r
k
e
r
_
t
h
r
e
a
d

?

0
0
:
0
0
:
0
0

[
k
w
o
r
k
e
r
/
u
:
0
H
]

S

0

8

2

r
o
o
t

0

0

1
3
9

-

0

0

c
p
u
_
s
t
o
p
p
e
r
_
t
h
r
e
a
d

?

0
0
:
0
0
:
0
0

[
m
i
g
r
a
t
i
o
n
/
0
]

S

0

9

2

r
o
o
t

0

0

1
9

0

0

0

r
c
u
_
g
p
_
k
t
h
r
e
a
d

?

0
0
:
0
0
:
0
0

[
r
c
u
_
b
h
]

S

0

1
0

2

r
o
o
t

0

0

1
9

0

0

0

r
c
u
_
g
p
_
k
t
h
r
e
a
d

?

0
0
:
0
0
:
0
0

[
r
c
u
_
s
c
h
e
d
]

S

0

1
1

2

r
o
o
t

0

0

1
3
9

-

0

0

s
m
p
b
o
o
t
_
t
h
r
e
a
d
_
f
n

?

0
0
:
0
0
:
0
0

[
w
a
t
c
h
d
o
g
/
0
]

S

0

1
2

2

r
o
o
t

0

0

1
3
9

-

0

0

s
m
p
b
o
o
t
_
t
h
r
e
a
d
_
f
n

?

0
0
:
0
0
:
0
0

[
w
a
t
c
h
d
o
g
/
1
]

S

0

1
3

2

r
o
o
t

0

0

1
9

0

0

0

s
m
p
b
o
o
t
_
t
h
r
e
a
d
_
f
n

?

0
0
:
0
0
:
0
0

[
k
s
o
f
t
i
r
q
d
/
1
]

S

0

1
4

2

r
o
o
t

0

0

1
3
9

-

0

0

c
p
u
_
s
t
o
p
p
e
r
_
t
h
r
e
a
d

?

0
0
:
0
0
:
0
0

[
m
i
g
r
a
t
i
o
n
/
1
]

S

0

1
6

2

r
o
o
t

0

0

3
9

-
2
0

0

0

w
o
r
k
e
r
_
t
h
r
e
a
d

?

0
0
:
0
0
:
0
0

[
k
w
o
r
k
e
r
/
1
:
0
H
]

S

0

1
7

2

r
o
o
t

0

0

3
9

-
2
0

0

0

r
e
s
c
u
e
r
_
t
h
r
e
a
d

?

0
0
:
0
0
:
0
0

[
c
p
u
s
e
t
]

S

0

1
8

2

r
o
o
t

0

0

3
9

-
2
0

0

0

r
e
s
c
u
e
r
_
t
h
r
e
a
d

?

0
0
:
0
0
:
0
0

[
k
h
e
l
p
e
r
]

.
.
.

l
o
t
s

o
f

p
r
o
c
e
s
s
e
s

r
e
m
o
v
e
d

S

1
0
0
0

2
0
9
8

1
3
4
8

r
o
b
e
r
t

1
3
4
8

0

1
9

0

2
3
6
3
6

9
7
2
6
9

p
o
l
l
_
s
c
h
e
d
u
l
e
_
t
i
m
e
o
u
t

?

0
0
:
0
0
:
0
0

g
n
o
m
e
-
s
c
r
e
e
n
s
a
v
e
r

S

1
0
0
0

2
1
2
1

1
3
4
8

r
o
b
e
r
t

1
3
4
8

0

1
9

0

1
3
9
3
2

1
2
9
2
5
3

p
o
l
l
_
s
c
h
e
d
u
l
e
_
t
i
m
e
o
u
t

?

0
0
:
0
0
:
0
0

u
p
d
a
t
e
-
n
o
t
i
f
i
e
r

S

1
0
0
0

2
1
3
9

1

r
o
b
e
r
t

1
3
4
8

0

9

1
0

1
2
6
1
8
0

1
6
0
7
1
5

p
o
l
l
_
s
c
h
e
d
u
l
e
_
t
i
m
e
o
u
t

?

0
0
:
0
0
:
3
9

/
u
s
r
/
b
i
n
/
p
y
t
h
o
n
3

/
u
s
r
/
b

S

1
0
0
0

2
1
7
4

1

r
o
b
e
r
t

1
4
0
3

0

1
9

0

3
7
6
0

6
9
0
1
6

p
o
l
l
_
s
c
h
e
d
u
l
e
_
t
i
m
e
o
u
t

?

0
0
:
0
0
:
0
0

/
u
s
r
/
l
i
b
/
l
i
b
u
n
i
t
y
-
w
e
b
a
p

S

1
0
0
0

2
2
6
8

1

r
o
b
e
r
t

1
4
0
3

0

1
9

0

8
9
8
8

2
5
3
6
3
4

p
o
l
l
_
s
c
h
e
d
u
l
e
_
t
i
m
e
o
u
t

?

0
0
:
0
0
:
0
0

/
u
s
r
/
l
i
b
/
g
v
f
s
/
g
v
f
s
d
-
h
t
t

S

1
0
0
0

2
2
7
8

2
2
6
8

r
o
b
e
r
t

1
4
0
3

0

1
9

0

6
2
8

1
1
1
0

w
a
i
t

?

0
0
:
0
0
:
0
0

s
h

-
c

/
u
s
r
/
l
i
b
/
x
8
6
_
6
4
-
l

S

1
0
0
0

2
2
7
9

2
2
7
8

r
o
b
e
r
t

1
4
0
3

0

1
9

0

3
4
1
2

4
9
8
8
7

p
o
l
l
_
s
c
h
e
d
u
l
e
_
t
i
m
e
o
u
t

?

0
0
:
0
0
:
0
0

/
u
s
r
/
l
i
b
/
x
8
6
_
6
4
-
l
i
n
u
x
-
g

S

1
0
0
0

2
3
0
5

1
3
4
8

r
o
b
e
r
t

1
3
4
8

0

1
9

0

4
8
4
4

1
1
1
9
7
3

p
o
l
l
_
s
c
h
e
d
u
l
e
_
t
i
m
e
o
u
t

?

0
0
:
0
0
:
0
0

/
u
s
r
/
l
i
b
/
x
8
6
_
6
4
-
l
i
n
u
x
-
g

S

1
0
0
0

2
3
6
4

1

r
o
b
e
r
t

1
4
0
3

0

1
9

0

6
0
6
8

6
0
6
9
2

p
o
l
l
_
s
c
h
e
d
u
l
e
_
t
i
m
e
o
u
t

?

0
0
:
0
0
:
0
0

/
u
s
r
/
l
i
b
/
g
e
o
c
l
u
e
/
g
e
o
c
l
u

S

1
0
0
0

2
3
6
8

1

r
o
b
e
r
t

1
4
0
3

0

1
9

0

7
7
4
4

8
6
2
1
2

p
o
l
l
_
s
c
h
e
d
u
l
e
_
t
i
m
e
o
u
t

?

0
0
:
0
0
:
0
0

/
u
s
r
/
l
i
b
/
u
b
u
n
t
u
-
g
e
o
i
p
/
u

S

1
0
0
0

2
3
7
1

2
3
6
8

r
o
b
e
r
t

1
4
0
3

0

1
9

0

6
2
4

1
1
1
0

w
a
i
t

?

0
0
:
0
0
:
0
0

s
h

-
c

/
u
s
r
/
l
i
b
/
x
8
6
_
6
4
-
l

S

1
0
0
0

2
3
7
2

2
3
7
1

r
o
b
e
r
t

1
4
0
3

0

1
9

0

3
4
1
2

4
9
8
8
7

p
o
l
l
_
s
c
h
e
d
u
l
e
_
t
i
m
e
o
u
t

?

0
0
:
0
0
:
0
0

/
u
s
r
/
l
i
b
/
x
8
6
_
6
4
-
l
i
n
u
x
-
g

S

1
0
0
0

2
9
1
7

1

r
o
b
e
r
t

1
3
4
8

0

1
9

0

2
5
2
0
8

1
5
3
5
0
3

p
o
l
l
_
s
c
h
e
d
u
l
e
_
t
i
m
e
o
u
t

?

0
0
:
0
0
:
1
1

g
n
o
m
e
-
t
e
r
m
i
n
a
l

S

1
0
0
0

2
9
2
5

2
9
1
7

u
t
m
p

1
3
4
8

0

1
9

0

8
4
4

3
7
0
8

u
n
i
x
_
s
t
r
e
a
m
_
r
e
c
v
m
s
g

?

0
0
:
0
0
:
0
0

g
n
o
m
e
-
p
t
y
-
h
e
l
p
e
r

S

1
0
0
0

2
9
2
6

2
9
1
7

r
o
b
e
r
t

2
9
2
6

0

1
9

0

3
0
1
6

6
5
2
0

w
a
i
t

p
t
s
/
2

0
0
:
0
0
:
0
0

b
a
s
h

S

1
0
0
0

2
9
7
7

2
9
2
6

r
o
b
e
r
t

2
9
2
6

0

1
9

0

1
5
2
4

5
5
8
2

w
a
i
t

p
t
s
/
2

0
0
:
0
0
:
0
0

m
a
n

p
s

S

1
0
0
0

2
9
8
7

2
9
7
7

r
o
b
e
r
t

2
9
2
6

0

1
9

0

9
9
2

3
4
4
3

n
_
t
t
y
_
r
e
a
d

p
t
s
/
2

0
0
:
0
0
:
0
0

p
a
g
e
r

-
s

S

1
0
0
0

2
9
9
3

2
9
1
7

r
o
b
e
r
t

2
9
9
3

0

1
9

0

3
1
0
4

6
5
2
0

w
a
i
t

p
t
s
/
3

0
0
:
0
0
:
0
0

b
a
s
h

S

0

3
5
6
5

2

r
o
o
t

0

0

1
9

0

0

0

w
o
r
k
e
r
_
t
h
r
e
a
d

?

0
0
:
0
0
:
0
0

[
k
w
o
r
k
e
r
/
1
:
2
]

S

0

3
6
7
1

2

r
o
o
t

0

0

1
9

0

0

0

w
o
r
k
e
r
_
t
h
r
e
a
d

?

0
0
:
0
0
:
0
0

[
k
w
o
r
k
e
r
/
0
:
1
]

R

1
0
0
0

3
6
8
8

2
9
9
3

r
o
b
e
r
t

2
9
9
3

0

1
9

0

1
3
0
0

5
6
6
1

-

p
t
s
/
3

0
0
:
0
0
:
0
0

p
s

-
e

-
o

s
,
u
i
d
,
p
i
d
,
p
p
i
d

Operating Systems Lecture 07 page

Info from a Linux process table
ps -e -o s,uid,pid,ppid,group,sess,c,pri,ni,rss,sz:7,wchan:30,tty,time,cmd

16

Operating Systems Lecture 07 page

Before next time

Read from the textbook
6.1 Basic Concepts
6.2 Scheduling Criteria
6.3 Scheduling Algorithms
6.5 Multiple-Processor Scheduling

17

