Tutorials

Lecturer

Robert Sheehan (r.sheehan@auckland.ac.nz)

Rm 303.488

office hours - Wednesday 2pm Thursday 10am

Textbook

Operating System Concepts (9th edition) - Silberschatz, Galvin and Gagne. The ebook version from au.wiley.com is \$50.00AUD. http://au.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002013.html

Test (10%) Wednesday 26th August, during the lecture time

Exam (70%) TBA

Three Assignments (20%)

Web site - www.cs.auckland.ac.nz/compsci340sc

You have to pass the assignments and exams separately, and get an overall pass.

What is an Operating System?

Assignment pass grade >25%.

Operating Systems

Lecture 01

page 1

Friday 4pm 260-092 (Owen G Glenn, Room 092)

Some of the lecture sessions may be tutorials as well.

Start 31st of July

Not compulsory

Sample topics for the first few weeks:

Setting up VMWare player and installing Ubuntu - use multiple cores Install dev packages

Python Programming with curses

- access to Unix commands such as pipe, fork, pid - redirecting stdio

Operating Systems

Lecture 01

page 2

Are these things part of the OS?

	file system
Examples	communication system
MacOS X	process manager
Windows	security manager
Linux	memory manager
UNIX	graphical user interface
Plan9	backup system
Amoeba	web browser
OpenVMS (Virtual Memory System)	media player
VM/CMS (Conversational Monitor System)	compiler
z/OS (IBM)	Java (or .Net) environment
Symbian	
Android	
iOS	

The software which makes the computer usable. It is *impossible* to use modern machines without an OS.

The collection of software sold (or freely available) as an OS.

Extreme approaches

OS software is the minimum amount of software required to

kernel - usually in memory always

process/thread management

communications memory management

file management

monolithic and micro-kernels.

All the software which comes with a standard release of the

many utilities and programs

Minimalist understanding

Maximalist understanding

allow the computer to function.

Usable vs Efficient

Some OSs are designed for specific needs

factory control systems aircraft control database servers phones

Others are general purpose desktop computers

phones

A trade off between usability and efficiency.

Usable - for whom?

the developer of the system a software engineer or computer scientist a data entry operator a child a person with a disability an "ordinary" user

Efficient

real-time systems dealing with many thousands of transactions a second battery life

Lecture 01

Operating Systems

OS.

5

page

OS Themes

Lecture 01

Manager model

The OS is a collection of managers. It prevents improper use of devices. Each manager is independent and maintains tables of information

Onion model

The OS is a series of layers.

Outer layers can access resources contained in inner layers. But not vice-versa.

Resource allocator model

Related to the manager model. The emphasis is on providing the services programs need. Must be fair. (Whatever that means.)

Dustbin model

This sees the OS as all the bits no one else wants to do.

Getting work done model

We only use computers to do something else: write an essay calculate a mortgage repayment find information download a song play a game make a phone call The OS has to help us to get our work done.

Operating Systems

Operating Systems

page 6

You should have some idea of

- interrupts
- security & protection
- file systems
- virtual memory
- processes and threads

The first assignment will require Python programming. You need to get comfortable with Python.

You should be able to discuss questions like these intelligently by the end of the course.

- How does typing a key cause a character to appear in a window on the display?
- How does your computer safely keep several applications running at once?
- How do remote files look as though they are local?
- How does processing get distributed over multiple cores?
- How does the failure of a computing resource get handled to minimize the disruption to the wider system?
- What happens when you plug a new USB device into your computer?

Operating Systems

Lecture 01

page 9

Operating Systems

least space

not divided into modules

Lecture 01

MS-DOS

Written to provide the most functionality in the

Although MS-DOS has some structure, its interfaces and

application program

resident system program

MS-DOS device drivers

levels of functionality are not well separated

page 10

OS DESIGN

<u>All in one</u> – all OS components can freely interact with each other. MS-DOS

Early UNIX

Separate layers - see the Onion model.

This simplifies verification and debugging.

Very hard to get the design correct.

Can be inefficient – lots of layers to go through to get work done. THE

OS/2

<u>Modules</u> – like the all-in-one but only loaded when necessary

Linux, Windows

Microkernels

Use client/server model.

Many modern general-purpose OSs use this approach (although that doesn't mean they are microkernel OSs)

Mach (basis for MacOS X)

QNX RT-OS

Exokernels - more radical microkernels

Virtual Machines VM/CMS

VM/CM Java **ROM BIOS device drivers**

Early UNIX

The UNIX OS consists of two separable parts.

Systems programs

The kernel

Operating Systems

Consists of everything below the system-call interface and above the physical hardware

Provides the file system, CPU scheduling, memory management, and other operating-system functions; a large number of functions for one level.

(the users)		
shells and commands compilers and interpreters system libraries		
system-call interface to the kernel		
signals terminal handling character I/O system terminal drivers	file system swapping block I/O system disk and tape drivers	CPU scheduling page replacement demand paging virtual memory
kernel interface to the hardware		
terminal controllers terminals	device controllers disks and tapes	memory controllers physical memory
	•	

THE Multiprogramming system

A layered design was first used in the THE operating system. Its six layers were:

layer 5:	user programs
layer 4:	buffering for input and output
layer 3:	operator-console device driver
layer 2:	memory management
layer 1:	CPU scheduling
layer 0:	hardware

Operating Systems

Lecture 01

page 14

Windows NT client/server

Lecture 01

Windows NT provided environmental subsystems to run code written to different

OS APIs.

Windows NT (and successors) is a hybrid system.

- Parts are layered but some of the layers have been merged to improve performance.
- Many OS services are provided by user-level servers
- e.g. the environmental subsystems.
- The POSIX subsystem is now called Interix and includes open source programs and libraries (not after Windows 8)

Before the next lecture

Read textbook

What Operating Systems Do 1.1 Operating System Structure 2.7 Linux 18.1, 18.2 Windows 7 19.1, 19.2

Preparation for next time

1.2 Computer-System Organization1.4 Operating-System Structure1.5 Operating-System Operations

page 13