
COMPSCI334S1T2008 Assignment 2

Lecturer: Ulrich Speidel, ulrich@cs.auckland.ac.nz

Due: April 23, 2008, no later than 23:59 pm via the Assignment Dropbox
(https://adb.ec.auckland.ac.nz/adb/)

HTML forms

Comboforms (also called comboscripts) are a well-known technique in web
programming. Traditionally, your HTML form and the script that processes the
form’s data sit in separate files. Your browser first requests the file with the
form and displays it to the user. Once the user has completed the form, the
browser then submits the form data to the script file that processes it.

A comboform combines these two files into the same URL, at least from the
browser’s perspective. When the browser requests a form from a comboform
script, it issues an HTTP GET or POST request for the script. Presume for
now that it’s a POST request. The script then looks at the POST data (if any).
If there is no POST data (or at least none from the form that goes with the
script), the script returns the form to the browser. If there is POST data that
looks as if it had come from the script’s form, the script processes it.

There is a simple comboform example on the course web site (under
Assignments) which demonstrates this principle. You can use it as a basis for
your assignment if you wish.

If the script outputs the form to the browser, the form’s action attribute points
back to the script, i.e., the same script is also used to process the form data.

This has a number of advantages, the main one being that there are fewer
files to maintain. In an advanced comboform (not for this assignment), the
script could also use include() to include the form and the response page
template from outside files to separate user interface and the business code
in the script itself. It is then easier to give the form and response page in the
external files to a designer and say “Make them look nicer” without running a
big risk that the designer will damage your code. Anyway, I digress!

Another advantage is that we can react to erroneous user input by letting the
script re-display the form with the "good" input fields pre-completed and an
error message that says which field(s) weren't completed correctly. We can
repeat this until the user provides proper input to our script.

In this assignment, I want you to write a reasonably complex comboform
application in a file booking.php. The form must be able to be pre-
completed by the script if the user input wasn’t entirely correct.
If the user input is correct, a confirmation message must be output.

The Application

Consider the following (not entirely imaginary) problem:

From the beginning of the year 2008, car parking at Tamaki Campus will
become even more difficult than now as the Department of Whiz Bang
Science moves to Tamaki and immediately employs about 2,400 staff.
Students must now book car parks at Tamaki. They can only book for five
days in advance.

In this system, students and staff are shown a form that asks them for

• their AUID (seven-digit ID number),
• the car registration number of their car,
• which of the next five days they would like to park, via a number of

checkboxes (important: it must be possible to make multiple
selections here – you must find out yourself how this is done, it’s not in
the handout!). The labels on the checkboxes should show the day of
the week (e.g., “Saturday” and the date and the month “17 March”).
Any other date information (such as the year) is optional.

The form must not contain any other input elements. The POST name of the
AUID field should be “AUID” and that of the registration number field “REGO”.
Including these two, there must not be more than three different input field
names used in the form (i.e., all of the checkboxes must have the same
name, hint, hint!). When the data is submitted, the script must check that:

• the AUID is valid, i.e., that it consists of seven digits
• the car registration number is valid. That is, it must show that it consists

either:

- of two uppercase letters followed by one to four digits, or
- of three uppercase letters followed by one to three digits

(we won’t worry about personalized plates here)

• The script must also check whether the selected days are valid, i.e.,

whether the data submitted is consistent with one of the next five days.
Example: If today is Saturday, 22nd March, you should only be able to
book for Sunday, 23rd March to Thursday, 27th March. At least one
day must be selected. For simplicity of checking, you may assume that
the form download and form submission happen on the same day (i.e.,
that you don’t have a form download before midnight followed by
submission after midnight, turning tomorrow into today). Hint: Think
carefully about the format in which you submit the data to the script.

Inputs that do not conform to these specifications must be rejected. If any of
the inputs from the form are rejected, the script must return the form to the
user. This time, the form must also show a message with a list of the input

problems that have occurred (e.g., “Your AUID must have seven digits”).
Affected input fields must be cleared. All other input fields must show the
previous input as default. This includes the checkboxes, which must show the
correct days selected, if any.

If the input test is successful, the script must return a conformation page to
the user, showing the input data, including a list of the days selected.

Your Implementation

Your implementation must come in one file called booking.php (case-
sensitive!). DO NOT USE DIFFERENT FILENAMES – OR YOUR
ASSIGNMENT WILL NOT BE MARKED.

Please use the assignment dropbox to submit:

https://adb.ec.auckland.ac.nz/adb/

Editing the script and HTML

You can edit the PHP and HTML code in your script with any text editor, such
as Notepad, BBEdit, Jext, or whatever your preferred editor is (MS Word is
not a good text editor, and I suggest that you stay away from HTML editors
such as FrontPage, DreamWeaver, and PageMill until you know what you’re
doing).

Note that PHP does not run in your browser, it only runs on webservers that
are configured to run PHP. If you don’t have your own (see class website for
advice on how to set one up), you can use m3r (see below).

Putting things onto the university web server (web334)

Note that the web334 web server is not visible outside the university network. This note only
applies if you are working from one of the labs or on the university wireless network. You can
use you own machine as well (see the course web site for setup instructions). NOTE: For
marking purposes, your assignment must work on web334.

If you want to use web334, you need to open an ssh connection to:

 web334. cs.auckland.ac.nz

Use your university login and password. To open an ssh connection, you can
use tools such as Putty or SSH Secure Shell, or the ssh2 command (sftp2 for
file transfers) under MS Windows. The following instructions assume that you
use ssh2 and sftp2, and that you are a little familiar with Unix.

On the Windows command line, cd to the directory of your assignment file.
Then issue the command:

ssh2 <your_upi>@web334.cs.auckland.ac.nz

Accept the key when prompted, and log in with your university password. You
should see a login message ending in this type of prompt:

<your_upi>@web334:~$

Assume your UPI is jblo123. After login, issue the ls command and you will
see a directory listing with the public_html directory:

jblo123@web334:~$ ls
public_html

Change into the public_html directory and create a directory for your
assignment:

jblo123@web334:~$ cd public_html/
jblo123@web334:~/public_html$ mkdir ass2
jblo123@web334:~/public_html$ ls ass2
ass2

Now, for testing, create an index file:

jblo123@web334:~/public_html$ echo Hello! > index.html

You should now be able to see this (mini) webpage online. Point your browser
at

 http://web334.cs.auckland.ac.nz/~jblo123/

(or whatever your UPI is) and you should see the page with “Hello!” on the
screen.

Assume you want to upload booking.php into the ass2 directory. Using
sftp2 this is just as easy:

sftp2 jblo123@web334.cs.auckland.ac.nz

Log in with your password and the following prompt will appear:

sftp>

Change to the public_html/ass2 directory

sftp> cd public_html/ass2
/var/home/jblo123/public_html/ass2
sftp> put booking.php
booking.php | 3 kB | 0.1 kB/s |
TOC: 00:00:01 | 100%

Do’s and Don’ts

Copying

You must not copy other people’s code. The above assignment contains
enough scope to exclude the possibility of similarities between
individual solutions. Do not ask other students for their code. Do not
offer them yours. This includes not letting other students see the
contents of your folders. Offenders will be dealt with according to the
departmental policy on cheating:

http://www.cs.auckland.ac.nz/CheatingPolicy.php

HTML Code

Any HTML that your script outputs to the browser must be clean, i.e., there
must be no open or overlapping tags, etc.

Dangerous Code

If we find code in your assignment that could compromise server security
(such as unchecked user input), we will deduct some marks. Be smart, think
like a hacker and don’t leave any back doors open.

Remarking

Note the assignment marking policy on

http://www.cs.auckland.ac.nz/compsci334s1t/assignments/

I do not publish marking guides in advance or make sample solutions
available – assignments are for you to experiment and find out.

