
Information Transmission and Coding
Department of Computer Science
COMPSCI 314 S1 C 2006

Introduction

We deal here with the transmission of information through a channel, as shown in the figure, with
the attendant coding of information to allow transmission.

The important terms here are –
• Information is anything that has meaning, especially something that is somewhat unexpected.
• The Information Source is some thing that generates information
• The Information Encoder converts the information into a form that can be handled by the rest
of the system

• The Channel carries the encoded information from one place to another (data transmission) or
from from one time to another (data storage and retrieval)

• The Information decoder recovers the encoded information (reverses the encoder)
• The Information Sink receives or processes the decoded or recovered information
• Noise is anything that corrupts the information being sent through the Channel
• The Capacity is the amount of information that can be delivered by the channel to decoder.
For a noiseless channel (with no noise input) it is usually identical to the bit rate, but for a
noisy channel will be less.

Important matters considered by Information and Coding Theory are –
1. How can we code information to get the maximum possible amount through a noiseless
channel? This leads particularly to data compression, both lossless or text compression where
the output must be bitwise identical to the original and lossy compression, where the result just
has to look or sound the same to a person.

2. How can we minimise the effect of noise on transmission through a noisy channel?

Noiseless Coding

In general we take a symbol from the information source and convert it into a codeword for
transmission over the channel. The channel can deliver only so many bits per second, so to
maximise the symbol transmission rate we want to maximise the number of symbols per bit
or, more usually minimise the bits/symbol. It should be obvious that frequent symbols should
be represented by the shorter codewords. Questions are – what are the limits, and how do we
approach them?

The information “Source” S emits symbols chosen from an alphabet of k symbols
{S 0,S 1,S k−1} (say the letters a…z, A…Z , the digits 0…9 plus punctuation) occurring
with probabilities {P0,P1,Pk−1} . Receiving a symbol Si gives a quantity of
information log1/Pi which is approximately the “surprise” in receiving the symbol. The
average information per symbol is known as the Entropy of the source (H) and is given by
the following formula. Note that H tends to 0 both as P0 (improbable symbol) and also
as P1 (expected symbol contains little information)

H=∑
i=0

k−1

Pi log2 1Pi
=−∑

i=0

k−1

Pi log2Pi

Information & Coding COMPSCI 314 S1 C 2006 27. Mar. 2006 Page 1 of 4

Information
Source

Information
Sink

Information
Encoder

Information
Decoder

Channel

Noise

If each symbol Si is encoded into a codeword of length Li then the average

codeword length per symbol is L=∑
i=0

k−1

PiLi

A fundamental result is that LH (average codeword length and entropy per
symbol), with equality if and only if Pi=−log2 Li for all i.

In practice, we must encode the most probable symbols with the shortest codes if
possible, so that each length is Li=−log2Pi

The Huffman Code is a practical method of constructing such a code, given the
symbol probabilities.

(The much more complex “arithmetic code” is often better because it is not limited to
whole bits per codeword; the fractional bits of the logarithmic length can “roll over”
into the next codeword.)

We also find that the efficiency of a code improves by coding an extension of the code
(encoding several symbols together). This is shown in the Huffman code examples at
the end for the code {A, B}, with PA = ¾ and PB = ¼.

Lossless Compression

The simplest lossless compressor just codes symbols according to their probabilities,
as with a Huffman code, and often with a “dynamic” Huffman code that adjusts its
symbol probabilities and coding as it proceeds (achieving say about 4 bits/char for
most text). Many compressors build a dictionary of known “phrases” and emit
pointers or indices into the phrase dictionary, such as the two described by Ziv &
Lempel –

• LZ-77 is used by most computer compressors, such as GZIP. It uses the
most recent 8 – 32 k bytes of the file as its dictionary and emits
{displacement, length} pairs back from the current position (or a single
byte if there is no match). Decompression is just a matter of copying
phrases from the given position in the window of recent text.

• LZ-78 and its variant known as LZW (and often just as Ziv-Lempel) uses
an explicit dictionary of usually about 4000 phrases, initialised to just the
256 ASCII characters. At each stage it examines the unprocessed input text
and emits the index of the longest matching phrase, at worst just one byte. It
then builds a new phrase by joining the preceding phrase and the first
symbol of the one just matched. The dictionary thus expands as it
accumulates phrases from the text; it is often purged when it becomes full.
This is the usual compressor with data communications as it can be made
very fast, but gives less compression than the LZ-77 derivatives.
Decompression involves reading a phrase from the dictionary (identified by
the index just read) and then creating a new one by adding to the previous
phrase.

More complex compressors restrict the range of possible symbols at each stage
according to their preceding “contexts” and often achieve less than 2 bits/char on text,
but are seldom used in data communications. But compressors such as BZIP are
widely used in program distribution.

Information & Coding COMPSCI 314 S1 C 2006 27. Mar. 2006 Page 2 of 4

Continuous or Analogue Transmission

The previous notes have all assumed digital, or noiseless transmission over a digital
channel. But ultimately most transmission is over an analogue channel of some
bandwidth W and with some noise. The question is “What is the Channel Capacity?”,
or “How many bits/second can the channel carry?”

The Channel Capacity C was investigated by Shannon in 1948. Start with two
observations –

1. If the bandwidth W doubles, we expect to be able to get twice as many signal
changes in a given time, so C ∝W.

2. The important aspect for noise is the ratio of signal power S to noise power N
(always appearing as the “signal-noise ratio” S/N). For a given S/N we can expect
to distinguish some number of different signal levels; if S/N doubles we can expect
to decide twice as many states, or 1 more bit. Therefore C ∝ log2(S/N).
[The S/N ratio is usually measured in deciBels (symbol dB), defined as
S/NdB=10log10(S/N).]

In fact Shannon showed (with n-dimensional geometry) that

C=Wlog 21 SN
This is “Shannon’s theorem” and is fundamental to all modern information
transmission, setting a bound to capacity for given bandwidth and noise.

Error Correcting Codes

• The simplest are the Block codes, such as Hamming, where a fixed-size block of
data has an ECC code applied to it; corrections for one block are quite independent
of other blocks.

• Convolutional Codes have an encoding mechanism “sliding” along the
information, interspersing parity bits at frequent intervals. Decoding is usually by a
Viterbi or Trellis decoder searching through the bit patterns that are compatible
with data and the known coding.

• Turbo Codes are a recent development with two parallel encoders, one with
permuted data; the decoders exchange information and mutually assist each other
in resolving errors.

When decoded most Error Correcting Codes generate a “syndrome” which is usually
zero if there is no error and otherwise shows the position of the error(s) and how to
correct.

Information & Coding COMPSCI 314 S1 C 2006 27. Mar. 2006 Page 3 of 4

