
1

CS314 2010 23/24

IPv4: Internet Protocol version 4

● Concept
● Addressing
● Packet format
● Fragmentation

● Control messages (ICMP)
● Getting an address (DHCP)
● Finding neighbours (ARP)
● Naming things (DNS)

2

Concept of a connectionless datagram (1)

● The idea goes back to 1962, and the current version of
IP was defined in the late 1970s

● Share expensive links by mixing variable-length
packets sent between logical addresses
– Much more dynamic than hardware multiplexing or circuit

switching
– As we've seen, allows a variety of routing mechanisms

3

Concept of a connectionless datagram (2)

● Share expensive links by mixing variable-length
packets sent between logical addresses
– Advantages: sharing costs, universal connectivity, great

flexibility
– Disadvantages: variable response time, risk of congestion or

packet loss

● The success of the Internet shows that the advantages
far outweigh the disadvantages

4

Logical addressing

● The source and destination addresses of IP packets are
logical, not physical
– Assigned by software

● and can be changed
– Assigned to interfaces (not whole computers)
– Must be unique, for routing to be possible
– Must be related to topology, for routing to scale
– Are also used as unique identifiers, as we'll see later
– One interface can have multiple addresses (rare in IPv4)

5

IPv4 Address Format

● In the abstract, it's just a 32 bit binary number:
01010011 11001010 10010110 00000010

● Conventionally written in “dotted decimal:”
83.202.150.2

● Upper layers of software have no business treating
addresses as anything but meaningless bit strings

● But to the routing system, addresses have some real
meaning

6

Location versus Identity
+-+
| IPv4 Address |
+-+

<----- high order bits indicate | low order bits indicate --->
 location for routing | identity on the LAN
 |
 NO FIXED BOUNDARY

● For example, in 10.1.2.17, you cannot assume that the
network is 10.1.2.0/24
– i.e. a subnet with 256 addresses

● It might equally well be, e.g., 10.1.2.16/28
– i.e. a subnet with 16 addresses

+-+
|0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1|
+-+

7

Old-fashioned IPv4 addressing (1)

● In the early years of IPv4 (up to about 1993),
addresses were divided into three classes
– Class A, user site was given a /8 prefix and had 24 bits free to

assign locally (16M addresses)
– Class B, /16 prefix with 16 local bits (65k addresses)
– Class C, /24 prefix with 8 local bits (256 addresses)

● This was scrapped because it led to inefficient use of
address space and to sparse routing tables

8

Old-fashioned IPv4 addressing (2)

● Addresses are now assigned in very large blocks to
ISPs and sub-divided among their customers
– CIDR (classless inter-domain routing) was in fact brought in

together with BGP4
– Because of CIDR, you can't tell how long the prefix is by

looking at the address
– Instead (e.g. in RIPv2 packets) you specify the complete

prefix, e.g. 130.216.32.0/24

9

Special types of IPv4 address (1)
● So far we have discussed unicast addresses

– That means an address used to send a packet to exactly one
interface

● IP also supports multicast addressing and routing
– That means an address used to send a packet to a large set of

interfaces in parallel

– Multicast IPv4 addresses are under prefix 224/4:
+-+
|1 1 1 0 x|
+-+

● The broadcast address is 255.255.255.255 but it only
works locally (it's blocked by routers)

10

Special types of IPv4 address (2)
● Sometimes a unicast address is used as an anycast address

– Used to send a packet to a group of interfaces, but only one should
respond, normally to provide redundant servers

– There is no way to tell an anycast address by looking at it;
they have to be manually coded into the routing system

● 0.0.0.0 means “this host”
– “host” is internet jargon for “computer”
– 0.0.0.0/0 is also the way a default route is identified

● 127.0.0.1 is the loopback address (send packets to yourself)
● 169.254.0.0/16 is “link local” space for isolated networks

 (RFC 3927)

11

Special types of IPv4 address (3)

● Three address ranges are reserved for private use
within a site
– 10.0.0.0/8
– 172.16.0.0/12
– 192.168.0.0/16

● Since anybody can use these addresses, they are
ambiguous and must never be routed off-site

● (This is not a complete list of special addresses. For
a complete list, see RFC 3330 at www.rfc-editor.org)

12

Mapping to Layer 2

● The IP packet has to be sent inside a Layer 2 frame,
such as an Ethernet frame

● The exact way this is done depends on the type of
Layer 2 link
– e.g. using Ethertype 0x0800 on Ethernet

 Link Layer IP packet Link Layer
 Header Trailer (if any)

 Layer 2 Layer 3 Layer 2

13

IPv4 Packet Format
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Version| IHL | DS Field | Total Length |
+-+
| Identification |Flags| Fragment Offset |
+-+
| Time To Live | Protocol | Header Checksum |
+-+
| Source Address |
+-+
| Destination Address |
+-+
| Options | Padding |
+-+
| Payload... |
+-+
 ...
+-+
| ...end of Payload |
+-+

14

Explanation of IPv4 header (1)
● Version: 4
● IHL (IP header length)

– header length (bytes/4, i.e. 32 bit words)
● DS (differentiated services) Field, previously known as

TOS (type of service) Field
– 8 bits used to manage quality of service

● Total Length
– length of IP header plus IP payload (bytes)

● Identification, Flags and Fragment Offset
– used for packet fragmentation, see later

15

Explanation of IPv4 header (2)
● Time To Live (often called TTL)

– actually a hop count, decreased by 1 at each router. The packet
is discarded if TTL=0, to prevent loops

● Protocol
– a value that defines the type of payload (TCP, UDP, etc.)

● Header checksum
– 16 bit 1's complement of 16 bit 1's complement sum of all other

header fields
– recalculated by each router, since TTL changes

● Source and Destination addresses
– as defined previously

16

IPv4 Header Options
● Most packets don't have them

– New options are hard to deploy since old routers don't like them
● All options start with an option type byte

+--------+
|CxxNNNNN|
+--------+

– C = 1 copied into each fragment, in case of fragmentation
– C = 0 not copied
– xx = option class (control or debugging)
– NNNNN = option number

● Most options have more bytes
+--------+--------+--------+ -+
|CxxNNNNN| size | data...| ... |
+--------+--------+--------+ -+

17

Example IPv4 Header Options
● Record Route

– each router inserts its address in the option
– generally blocked due to security worries

● Loose Source Route
– allows the sender to specify the route
– also performs 'record route'
– generally blocked due to security worries

● Router Alert
– tells each router to check further into the packet instead of

just forwarding it
– a good way to slow your packet down

● Generally speaking, header options were not a big
success in the IPv4 design

18

Fragmentation
● An IPv4 host is required to handle datagrams of at

least 576 bytes including the IPv4 header
● A given network path has a Maximum Transmission

Unit (MTU) size, normally more than 576
– Somewhat less than Ethernet size is common, 1400-1500 bytes
– Fragmentation is designed to work for link MTUs down to 68 bytes

● Two problems to send a packet > link MTU size
 1. How to know what the MTU size is?
 2. How to split the large packet up?

● For the moment, assume we know the MTU size
● The hard part isn't fragmentation; it's re-assembly

19

The fragment header
● The sender splits up the packet; each fragment has a

fragment header:
+-+
| Identification |Flags| Fragment Offset |
+-+
– Identification: all fragments of the same packet have the same value
– Flags

● one unused bit
● DF bit - if set, Don't Fragment this packet
● MF bit - if set, More Fragments will follow

– Fragment offset: how far into the packet this fragment begins,
in units of 8 bytes

● If a sender (usually a router) knows that the next hop MTU is
too small, it splits the packet into fragments

20

Reassembling fragments
● Routers don't reassemble fragments; that's left to the final

receiver
● If you receive a packet with an unknown non-zero

Identification value, you must
– reserve a reassembly buffer
– tag the buffer with the Identification value
– store the fragment in the buffer at the given offset (remembering

that the first fragment may not arrive first and the last fragment
may not arrive last)

– as further fragments with the same Identification arrive, store them
in the buffer

– when all fragments have arrived, act as if the whole packet had
just arrived

– if not all fragments arrive after a timeout, discard the buffer

21

Problems with fragmentation
● Double fragmentation

– if MTU reduces twice along the path, fragmentation could happen
twice

● Silly fragmentation
– if the actual MTU is just a bit shorter than each packet we'll keep

sending one long fragment and one very small one
● Reassembly is a slow process
● Interferes with TCP flow control
● On gigabit networks, the 16 bit ID field can wrap

around ('recycle') in less time than the reassembly
timeout
– disastrous, as fragments of a new packet may be mistaken for lost

fragments of an old one

22

ICMP: Internet Control Message Protocol

● Used for low-level management functions in an IP
network

● Sent as IP packets with Protocol = 1
● First byte of payload is an ICMP Message Type
● ICMP packets typically report errors in the processing

of IP packets
– To avoid recursion of messages about messages,

no ICMP messages are sent about ICMP messages
● Now three example ICMP messages ...

23

ICMP “Echo” and “Echo Reply”
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0| Checksum |
+-+
| Identifier | Sequence Number |
+-+
| Data (anything) ...
+-+-+-+-+-+-+-+-+-+-+-+-

Type
 8 = Echo, 0 = Echo Reply
Identifier
 A random value used to match echo requests and replies
Sequence Number
 Counts up, to match requests and replies in series
Data
 Should be sent back without change

Note: This is what ping uses.

24

ICMP “Destination Unreachable”
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|0 0 0 0 0 0 1 1| Code | Checksum |
+-+
| unused |
+-+
| IP Header + first 64 payload bits of failed packet |
+-+

Code
 0 = net unreachable
 1 = host unreachable
 2 = protocol unreachable
 3 = port unreachable
 4 = fragmentation needed but DF set
 5 = source route failed
Checksum
 16 bit 1's complement checksum of ICMP message

25

ICMP “Parameter Problem”

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|0 0 0 0 1 1 0 0| Code | Checksum |
+-+
| Pointer | unused |
+-+
| IP Header + first 64 payload bits of failed packet |
+-+

Code
 0 = pointer points to error
 No other values defined
Pointer
 Byte number in failed packet where problem was found

26

Dynamic Host Configuration Protocol
● For many years, addresses had to be assigned by

hand and configured by hand
– Obviously impractical once PCs appeared by the million
– DHCP appeared by 1993

● DHCP allows a machine to ask a central server for an
address (and other info) when it reboots
– May be a different address each time, which is OK for clients but

inconvenient for servers
● First step is to send a request to the DHCP server

– But after a reboot, you don't know the address
of the DHCP server and you don't have an IP
source address to send from. A bit of a puzzle

Oops! DHCP is important, but not detailed in Shay.

27

Bootstrapping DHCP
● Client starts by broadcasting a DHCP DISCOVER

message on its LAN
– Source IP address is 0.0.0.0
– Destination IP address is 255.255.255.255
– Destination hardware address is LAN broadcast
– DISCOVER message includes client's LAN hardware address

● DHCP server will catch the broadcast and reply with a
DHCP OFFER message
– An OFFER message includes a fresh IP address for the client
– Source address is the DHCP server's own IP address
– Destination IP address is the offered IP address
– Destination hardware address is the one supplied by the client

28

Some DHCP details
● DHCP is built up from an older bootstrap protocol

called BOOTP
– BOOTP and DHCP messages are sent over UDP (to be

discussed later), not raw IP
● Either the DHCP server is on the LAN, or a 'DHCP

relay' (built into a router) will catch the DHCP
DISCOVER and send it on

● There can be several DHCP servers and several
DHCP OFFER messages
– The client must choose one of them

● DHCP addresses have a lifetime (known as a lease)
– The client must renew after that lifetime expires

29

DHCP message types
● DISCOVER, OFFER - as above
● REQUEST - client requests to accept OFFER or extend

lease
● ACK - server accepts REQUEST
● NAK - server denies REQUEST or expires lease
● DECLINE - client rejects OFFER
● RELEASE - client has finished with address
● INFORM - client has address, but requests other

parameters

30

Normal DHCP sequence

Client
DISCOVER

(wait)

REQUEST

(wait)

(initialise)

(work)...

RELEASE

(shutdown)

Server
(reserve address)

OFFER

(commit)

ACK

(re-use address)

31

Other information (optionally) supplied by DHCP

● DHCP now has >100 optional parameters
– Default router address(es) ('default gateway')
– Static routes
– Local net mask
– DNS server address
– Parameters for MTU discovery
– Parameters for router discovery
– Type of Ethernet encapsulation
– ...
– Mail server addresses
– Timezone information
– Physical location data (street address etc.)

32

Finding Neighbours: Address Resolution Protocol
● Suppose you have an IP address from DHCP as well

as the IP address of the default router
– You: 130.216.1.17
– Router: 130.216.1.1

● By definition, the default router is on your LAN, but
how do you know its Ethernet address?
– That is the problem ARP solves

● Concept
– Broadcast an ARP Request asking for 130.216.1.1
– That host unicasts an ARP Reply
– Cache the Ethernet address found in the Reply

Oops! ARP is important, but not detailed in Shay

33

ARP message format (on Ethernet)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Hardware type = 1 | Protocol type = 0x0806 |
+-+
| HwAddrLength | ProtoAddLgth | ARP opcode (Request/Reply) |
+-+
| Sender Hardware Address (48 bits) |
+-+
| |
+-+
| Sender Protocol Address (32 bits) |
+-+
| Target Hardware Address (48 bits) |
+-+
| |
+-+
| Target Protocol Address (32 bits) |
+-+

34

ARP message format notes

● ARP is carried directly over Layer 2, not over IP,
using Ethertype 0x0806

● Hardware type, etc., allow for use over other
LAN types than Ethernet and other protocols
than IPv4

● Opcodes: Request = 1, Reply =2
● Target Hardware Address is blank in Request

and filled in in the Reply
– Target and Sender are swapped between Request and

Reply

35

ARP in practice

● Clear ARP cache on restart to avoid stale data
● Two Replies to one Request - disaster!

– Somehow, two hosts believe they have the same address
– Should not trust either of the replies

● When a host disconnects, DHCP might give its address
to someone else - but it's still in your ARP cache -
disaster!
– ARP cache timeout must be short compared to DHCP hold

time
– Unsolicited ARP with Sender=Target refreshes the cache

● ARP Reply may come from a proxy (e.g. a bridge)

36

Let's see where we are ...
● We know what an IPv4 packet looks like
● We know how to get an IPv4 address, default router

address, etc. (DHCP)
● We know how to find a neighbour's LAN hardware

address, given its IPv4 address (ARP)
● We know how to send a packet, fragment and

reassemble packets, and handle packet level errors
(ICMP)

● We know how to route off the LAN (RIP, OSPF, BGP4)
● Missing: how do we find the IPv4 address of another

system from its name?

37

Naming Things: DNS (Domain Name System)

● Basic concept: unique names in a structured tree
– Tree is string-based, n-ary (not binary)

ibm

org

ac

(root)

 Top Level
Domains

en

comcom

wikipedia

www

massey

cs www

nz

auckland

www

www

38

DNS names
● www.auckland.ac.nz and www.cs.auckland.ac.nz

are FQDNs - Fully Qualified Domain Names
● They are unique (i.e. represent different leaves on the

DNS tree)
– The DNS must have a unique root
– Names must be registered to guarantee uniqueness

● TLD (Top Level Domain) names are registered world-
wide by IANA (Internet Assigned Numbers Authority)

● Each TLD such as com or nz has its own registry
● Subdomains such as ac.nz and ibm.com manage their

own registries

39

DNS is a massive Distributed Database
● The database contains hundreds of millions of entries of

several types, called RRs (resource records)
● The most important RR type today is an A record

– The A record for www.cs.auckland.ac.nz contains 130.216.33.106
● When a client machine in Switzerland asks its local

DNS server for that A record, how does it get there from
Auckland?
– Obviously, it is impractical for every one of the millions of DNS

servers in the world to be pre-loaded with hundreds of millions
of RRs

– Obviously, it would be horribly slow if every lookup of every
FQDN had to be sent back to the original registry that
registered it

40

Divide and Conquer: DNS Zones
● The namespace is divided into hierarchical zones

ibm

org

ac

(root)

en

comcom

wikipedia

www

massey

cs www

nz

auckland

www

www

41

Authoritative name servers
● Each zone contains NS records for the authoritative

name servers for its child zones
– The root has an NS record for nz
– nz has an NS record for ac.nz
– ac.nz has an NS record for auckland.ac.nz
– auckland.ac.nz has an NS record for cs.auckland.ac.nz
– cs.auckland.ac.nz has no NS records - it is a leaf zone

● The authoritative name servers are configured with all
RRs for all FQDNs in their zone
– But not for FQDNs in child zones; those are delegated
– Configuration is often done from an equipment database,

and requires careful clerical work

42

Finding the RRs for a given FQDN
● Our problem is reduced to finding the address of the

authoritative server of the domain containing those
RRs

● Every host includes code called a resolver which takes
an FQDN and returns an RR
– A full resolver interacts with mutiple DNS servers in

sequence
– A simple resolver interacts with one “recursive” DNS server
– In both cases, the lookup process is the same
– Resolver, or recursive server, sends DNS Request

messages
– Servers send DNS Response messages

43

Illustrative full DNS lookup
● Resolver is pre-configured with well-known IP addresses of the

root servers and knows nothing else
● DNS Request to a root server for NS record of nz

– DNS Response with nz servers including
ns4.dns.net.nz = 203.97.40.200

● DNS Request to ns4.dns.net.nz for NS record of ac.nz
– DNS Response with ac.nz servers including

ns6.dns.net.nz = 204.74.113.253
● DNS Request to ns6.dns.net.nz for NS record of auckland.ac.nz

– DNS Response with auckland.ac.nz servers including
dns1.auckland.ac.nz = 130.216.1.2

● DNS Request to dns1.auckland.ac.nz for A record of
www.auckland.ac.nz
– DNS Response 130.216.11.202

44

Making DNS scale to trillions of requests per day

● That means avoiding full lookup in most cases
● Principle: all zones have a defined TTL (time to live).

All DNS servers and resolvers may cache any RR
found in a DNS Response until its zone TTL expires
– You really shouldn't be looking up .com or .nz all the time!
– Since TTL may be long (days), DNS updates sometimes lag

unless somebody flushes the resolver cache
– For example, cs.auckland.ac.nz has TTL=1 day. A resolver

that has cached it will not see any change until tomorrow
● Practice: load sharing within a zone

– Most zones of any size operate multiple parallel DNS
servers to provide load sharing and backup

– Zone files must be kept identical between them

45

Many other aspects of DNS
● This was an overview. We don't have time for:

– DNS message formats (sent over UDP)
– Reverse lookup (getting from an IP address to an FQDN)
– Dynamic DNS updates (to avoid clerical work)
– DNS Security (to prevent DNS spoofing)
– Creative uses of DNS
– DNS operational pitfalls

● DNS is the only example of a successful distributed
database that is deployed worldwide on hundreds of
millions of systems. Its designer (Paul Mockapetris)
deserves great credit

46

Summing up on IPv4 ...
● We know what an IPv4 packet looks like
● We know how to get an IPv4 address, default router

address, etc. (DHCP)
● We know how to find a neighbour's LAN hardware

address, given its IPv4 address (ARP)
● We know how to send a packet, fragment and

reassemble packets, and handle packet level errors
(ICMP)

● We know how to route off the LAN (RIP, OSPF, BGP4)
● We know how to find the IPv4 address of another

system from its FQDN (DNS)

47

References
● Shay 11.1, 11.2

– Bug:
● Talks about Class A, B, C addresses in present tense

● Amazon will find you good books on TCP/IP by
– Douglas E. Comer and David L. Stevens
– W. Richard Stevens
– Pete Loshin

● Many RFCs, but the older ones are hard to understand.
Try RFC 1122, but today the only true definition is the
running code in Linux, Windows, etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

