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IPv4: Internet Protocol version 4

● Concept
● Addressing
● Packet format
● Fragmentation

● Control messages (ICMP)
● Getting an address (DHCP)
● Finding neighbours (ARP)
● Naming things (DNS)
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Concept of a connectionless datagram (1)

● The idea goes back to 1962, and the current version of 
IP was defined in the late 1970s

● Share expensive links by mixing variable-length 
packets sent between logical addresses
– Much more dynamic than hardware multiplexing or circuit 

switching
– As we've seen, allows a variety of routing mechanisms
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Concept of a connectionless datagram (2)

● Share expensive links by mixing variable-length 
packets sent between logical addresses
– Advantages: sharing costs, universal connectivity, great 

flexibility
– Disadvantages: variable response time, risk of congestion or 

packet loss

● The success of the Internet shows that the advantages 
far outweigh the disadvantages



4

Logical addressing

● The source and destination addresses of IP packets are 
logical, not physical
– Assigned by software

● and can be changed
– Assigned to interfaces (not whole computers)
– Must be unique, for routing to be possible
– Must be related to topology, for routing to scale
– Are also used as unique identifiers, as we'll see later
– One interface can have multiple addresses (rare in IPv4)
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IPv4 Address Format

● In the abstract, it's just a 32 bit binary number:
01010011 11001010 10010110 00000010

● Conventionally written in “dotted decimal:”
83.202.150.2

● Upper layers of software have no business treating 
addresses as anything but meaningless bit strings

● But to the routing system, addresses have some real 
meaning
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Location versus Identity
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       IPv4 Address                            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  
<----- high order bits indicate   |  low order bits indicate --->
       location for routing       |  identity on the LAN
                                  | 
                          NO FIXED BOUNDARY

● For example, in 10.1.2.17, you cannot assume that the 
network is 10.1.2.0/24
– i.e. a subnet with 256 addresses

● It might equally well be, e.g., 10.1.2.16/28
– i.e. a subnet with 16 addresses

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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Old-fashioned IPv4 addressing (1)

● In the early years of IPv4 (up to about 1993), 
addresses were divided into three classes
– Class A, user site was given a /8 prefix and had 24 bits free to 

assign locally (16M addresses)
– Class B, /16 prefix with 16 local bits (65k addresses)
– Class C, /24 prefix with 8 local bits (256 addresses)

● This was scrapped because it led to inefficient use of 
address space and to sparse routing tables
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Old-fashioned IPv4 addressing (2)

● Addresses are now assigned in very large blocks to 
ISPs and sub-divided among their customers 
– CIDR (classless inter-domain routing) was in fact brought in 

together with BGP4
– Because of CIDR, you can't tell how long the prefix is by 

looking at the address
– Instead (e.g. in RIPv2 packets) you specify the complete 

prefix, e.g. 130.216.32.0/24
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Special types of IPv4 address (1)
● So far we have discussed unicast addresses

– That means an address used to send a packet to exactly one 
interface

● IP also supports multicast addressing and routing
– That means an address used to send a packet to a large set of 

interfaces in parallel

– Multicast IPv4 addresses are under prefix 224/4: 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 1 1 0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

● The broadcast address is 255.255.255.255 but it only 
works locally (it's blocked by routers)
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Special types of IPv4 address (2)
● Sometimes a unicast address is used as an anycast  address

– Used to send a packet to a group of interfaces, but only one should 
respond, normally to provide redundant servers

– There is no way to tell an anycast address by looking at it; 
they have to be manually coded into the routing system

● 0.0.0.0 means “this host”
– “host” is internet jargon for  “computer”
– 0.0.0.0/0 is also the way a default route is identified

● 127.0.0.1 is the loopback address (send packets to yourself)
● 169.254.0.0/16 is “link local” space for isolated networks 

     (RFC 3927)
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Special types of IPv4 address (3)

● Three address ranges are reserved for private use 
within a site
– 10.0.0.0/8 
– 172.16.0.0/12
– 192.168.0.0/16

● Since anybody can use these addresses, they are 
ambiguous and must never be routed off-site

● (This is not a complete list of special addresses. For 
a complete list, see RFC 3330 at www.rfc-editor.org)
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Mapping to Layer 2 

● The IP packet has to be sent inside a Layer 2 frame, 
such as an Ethernet frame

● The exact way this is done depends on the type of 
Layer 2 link
– e.g. using Ethertype 0x0800 on Ethernet

   Link Layer IP packet Link Layer     
   Header Trailer (if any)

 Layer 2 Layer 3 Layer 2
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IPv4 Packet Format
 0                   1                   2                   3   
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version|  IHL  |  DS Field     |          Total Length         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         Identification        |Flags|      Fragment Offset    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Time To Live |    Protocol   |         Header Checksum       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       Source Address                          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Destination Address                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Options                    |    Padding    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Payload...                                 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    ...end of Payload          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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Explanation of IPv4 header (1)
● Version: 4
● IHL (IP header length)

– header length (bytes/4, i.e. 32 bit words)
● DS (differentiated services) Field, previously known as 

TOS (type of service) Field
– 8 bits used to manage quality of service

● Total Length
– length of IP header plus IP payload (bytes)

● Identification, Flags and Fragment Offset
– used for packet fragmentation, see later
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Explanation of IPv4 header (2)
● Time To Live (often called TTL)

– actually a hop count, decreased by 1 at each router. The packet 
is discarded if TTL=0, to prevent loops

● Protocol
– a value that defines the type of payload (TCP, UDP, etc.)

● Header checksum
– 16 bit 1's complement of 16 bit 1's complement sum of all other 

header fields
– recalculated by each router, since TTL changes

● Source and Destination addresses
– as defined previously
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IPv4 Header Options
● Most packets don't have them

– New options are hard to deploy since old routers don't like them
● All options start with an option type byte

+--------+
|CxxNNNNN|
+--------+

– C = 1 copied into each fragment, in case of fragmentation
– C = 0 not copied
– xx = option class (control or debugging)
– NNNNN = option number

● Most options have more bytes
+--------+--------+--------+      -+
|CxxNNNNN| size   | data...|  ...  | 
+--------+--------+--------+      -+
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Example IPv4 Header Options
● Record Route

– each router inserts its address in the option
– generally blocked due to security worries

● Loose Source Route
– allows the sender to specify the route 
– also performs 'record route'
– generally blocked due to security worries

● Router Alert
– tells each router to check further into the packet instead of 

just forwarding it
– a good way to slow your packet down

● Generally speaking, header options were not a big 
success in the IPv4 design
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Fragmentation
● An IPv4 host is required to handle datagrams of at 

least 576 bytes including the IPv4 header
● A given network path has a Maximum Transmission 

Unit (MTU) size, normally more than 576
– Somewhat less than Ethernet size is common, 1400-1500 bytes
– Fragmentation is designed to work for link MTUs down to 68 bytes

● Two problems to send a packet > link MTU size
 1. How to know what the MTU size is?
 2. How to split the large packet up?

● For the moment, assume we know the MTU size
● The hard part isn't fragmentation; it's re-assembly
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The fragment header
● The sender splits up the packet; each fragment has a 

fragment header:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         Identification        |Flags|      Fragment Offset    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
– Identification: all fragments of the same packet have the same value
– Flags

● one unused bit
● DF bit - if set, Don't Fragment this packet
● MF bit - if set, More Fragments will follow

– Fragment offset: how far into the packet this fragment begins, 
in units of 8 bytes

● If a sender (usually a router) knows that the next hop MTU is 
too small, it splits the packet into fragments



20

Reassembling fragments
● Routers don't reassemble fragments; that's left to the final 

receiver
● If you receive a packet with an unknown non-zero 

Identification value, you must
– reserve a reassembly buffer
– tag the buffer with the Identification value
– store the fragment in the buffer at the given offset (remembering 

that the first fragment may not arrive first and the last fragment 
may not arrive last)

– as further fragments with the same Identification arrive, store them 
in the buffer

– when all fragments have arrived, act as if the whole packet had 
just arrived

– if not all fragments arrive after a timeout, discard the buffer
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Problems with fragmentation
● Double fragmentation

– if MTU reduces twice along the path, fragmentation could happen 
twice 

● Silly fragmentation
– if the actual MTU is just a bit shorter than each packet we'll keep 

sending one long fragment and one very small one
● Reassembly is a slow process
● Interferes with TCP flow control
● On gigabit networks, the 16 bit ID field can wrap 

around ('recycle') in less time than the reassembly 
timeout
– disastrous, as fragments of a new packet may be mistaken for lost 

fragments of an old one 
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ICMP: Internet Control Message Protocol

● Used for low-level management functions in an IP 
network

● Sent as IP packets with Protocol = 1
● First byte of payload is an ICMP Message Type
● ICMP packets typically report errors in the processing 

of IP packets
– To avoid recursion of messages about messages, 

no ICMP messages are sent about ICMP messages
● Now three example ICMP messages ...
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ICMP “Echo” and “Echo Reply”
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0|          Checksum             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Identifier                 |        Sequence Number        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Data (anything) ... 
+-+-+-+-+-+-+-+-+-+-+-+-

Type
     8 = Echo, 0 = Echo Reply
Identifier
      A random value used to match echo requests and replies
Sequence Number
     Counts up, to match requests and replies in series
Data
     Should be sent back without change

Note: This is what ping uses.
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ICMP “Destination Unreachable”
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0 0 0 1 1|     Code      |          Checksum             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                             unused                            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    IP Header + first 64 payload bits of failed packet         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Code
      0 = net unreachable
      1 = host unreachable
      2 = protocol unreachable
      3 = port unreachable
      4 = fragmentation needed but DF set
      5 = source route failed
Checksum
      16 bit 1's complement checksum of ICMP message
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ICMP “Parameter Problem”

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0 1 1 0 0|     Code      |          Checksum             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer       |             unused                            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    IP Header + first 64 payload bits of failed packet         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Code
      0 = pointer points to error
      No other values defined
Pointer
      Byte number in failed packet where problem was found
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Dynamic Host Configuration Protocol
● For many years, addresses had to be assigned by 

hand and configured by hand
– Obviously impractical once PCs appeared by the million
– DHCP appeared by 1993

● DHCP allows a machine to ask a central server for an 
address (and other info) when it reboots
– May be a different address each time, which is OK for clients but 

inconvenient for servers
● First step is to send a request to the DHCP server

– But after a reboot, you don't know the address 
of the DHCP server and you don't have an IP 
source address to send from. A bit of a puzzle

Oops!  DHCP is important, but not detailed in Shay.
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Bootstrapping DHCP
● Client starts by broadcasting a DHCP DISCOVER 

message on its LAN
– Source IP address is 0.0.0.0
– Destination IP address is 255.255.255.255
– Destination hardware address is LAN broadcast
– DISCOVER message includes client's LAN hardware address

● DHCP server will catch the broadcast and reply with a 
DHCP OFFER message
– An OFFER message includes a fresh IP address for the client
– Source address is the DHCP server's own IP address
– Destination IP address is the offered IP address
– Destination hardware address is the one supplied by the client
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Some DHCP details
● DHCP is built up from an older bootstrap protocol 

called BOOTP
– BOOTP and DHCP messages are sent over UDP (to be 

discussed later), not raw IP 
● Either the DHCP server is on the LAN, or a 'DHCP 

relay' (built into a router) will catch the DHCP 
DISCOVER and send it on

● There can be several DHCP servers and several 
DHCP OFFER messages
– The client must choose one of them

● DHCP addresses have a lifetime (known as a lease)
– The client must renew after that lifetime expires
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DHCP message types
● DISCOVER, OFFER - as above
● REQUEST - client requests to accept OFFER or extend 

lease
● ACK - server accepts REQUEST
● NAK - server denies REQUEST or expires lease
● DECLINE - client rejects OFFER
● RELEASE - client has finished with address
● INFORM - client has address, but requests other 

parameters
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Normal DHCP sequence

Client
DISCOVER

(wait)

REQUEST

(wait)

(initialise)

(work)...

RELEASE

(shutdown)

Server
(reserve address)

OFFER

(commit)

ACK

(re-use address)
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Other information (optionally) supplied by DHCP

● DHCP now has >100 optional parameters
– Default router address(es) ('default gateway')
– Static routes
– Local net mask
– DNS server address
– Parameters for MTU discovery
– Parameters for router discovery
– Type of Ethernet encapsulation
– ...
– Mail server addresses
– Timezone information
– Physical location data (street address etc.)



32

Finding Neighbours: Address Resolution Protocol
● Suppose you have an IP address from DHCP as well 

as the IP address of the default router
– You: 130.216.1.17
– Router: 130.216.1.1

● By definition, the default router is on your LAN, but 
how do you know its Ethernet address?
– That is the problem ARP solves

● Concept
– Broadcast an ARP Request asking for 130.216.1.1
– That host unicasts an ARP Reply
– Cache the Ethernet  address found in the Reply

Oops! ARP is important, but not detailed in Shay
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ARP message format (on Ethernet)

 0                   1                   2                   3   
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Hardware type = 1             |  Protocol type = 0x0806       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| HwAddrLength  | ProtoAddLgth  | ARP opcode (Request/Reply)    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                Sender Hardware Address (48 bits)              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               |                               
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                Sender Protocol Address (32 bits)              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                Target Hardware Address (48 bits)              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                Target Protocol Address (32 bits)              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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ARP message format notes

● ARP is carried directly over Layer 2, not over IP, 
using Ethertype 0x0806

● Hardware type, etc., allow for use over other 
LAN types than Ethernet and other protocols 
than IPv4

● Opcodes:  Request = 1, Reply =2
● Target Hardware Address is blank in Request 

and filled in in the Reply
– Target and Sender are swapped between Request and 

Reply
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ARP in practice

● Clear ARP cache on restart to avoid stale data
● Two Replies to one Request - disaster!

– Somehow, two hosts believe they have the same address
– Should not trust either of the replies

● When a host disconnects, DHCP might give its address 
to someone else - but it's still in your ARP cache - 
disaster!
– ARP cache timeout must be short compared to DHCP hold 

time
– Unsolicited ARP  with Sender=Target  refreshes the cache

● ARP Reply may come from a proxy (e.g. a bridge)
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Let's see where we are ...
● We know what an IPv4 packet looks like
● We know how to get an IPv4 address, default router 

address, etc. (DHCP)
● We know how to find a neighbour's LAN hardware 

address, given its IPv4 address (ARP)
● We know how to send a packet, fragment and 

reassemble packets, and handle packet level errors 
(ICMP)

● We know how to route off the LAN (RIP, OSPF, BGP4)
● Missing:  how do we find the IPv4 address of another 

system from its name?



37

Naming Things: DNS (Domain Name System)

● Basic concept: unique names in a structured tree
– Tree is string-based, n-ary (not binary)

ibm

org

ac

(root)

   .... Top Level 
Domains

en

comcom

wikipedia

www

massey

cs www

nz

auckland

www

www



38

DNS names
● www.auckland.ac.nz  and  www.cs.auckland.ac.nz

are FQDNs - Fully Qualified Domain Names
● They are unique (i.e. represent different leaves on the 

DNS tree)
– The DNS must have a unique root
– Names must be registered to guarantee uniqueness

● TLD (Top Level Domain) names are registered world-
wide by IANA (Internet Assigned Numbers Authority)

● Each TLD such as com or nz has its own registry
● Subdomains such as ac.nz and ibm.com manage their 

own registries
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DNS is a massive Distributed Database
● The database contains hundreds of millions of entries of 

several types, called RRs (resource records)
● The most important RR type today is an A record 

– The A record for www.cs.auckland.ac.nz  contains 130.216.33.106
● When a client machine in Switzerland asks its local 

DNS server for that A record, how does it get there from 
Auckland?
– Obviously, it is impractical for every one of the millions of DNS 

servers in the world to be pre-loaded with hundreds of millions 
of RRs

– Obviously, it would be horribly slow if every lookup of every 
FQDN had to be sent back to the original registry that 
registered it
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Divide and Conquer: DNS Zones
● The namespace is divided into hierarchical zones

ibm

org

ac

(root)

   ....

en

comcom

wikipedia

www

massey

cs www

nz

auckland

www

www
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Authoritative name servers
● Each zone contains NS records for the authoritative 

name servers for its child zones
– The root has an NS record for nz
– nz has an NS record for ac.nz
– ac.nz has an NS record for auckland.ac.nz
– auckland.ac.nz  has an NS record for cs.auckland.ac.nz
– cs.auckland.ac.nz  has no NS records - it is a leaf zone

● The authoritative name servers are configured with all 
RRs for all FQDNs in their zone
– But not for FQDNs in child zones; those are delegated
– Configuration is often done from an equipment database, 

and requires careful clerical work
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Finding the RRs for a given FQDN
● Our problem is reduced to finding the address of the 

authoritative server of the domain containing those 
RRs

● Every host includes code called a resolver which takes 
an FQDN and returns an RR
– A full resolver interacts with mutiple DNS servers in 

sequence
– A simple resolver interacts with one “recursive” DNS server
– In both cases, the lookup process is the same
– Resolver, or recursive server, sends DNS Request 

messages
– Servers send DNS Response messages
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Illustrative full DNS lookup
● Resolver is pre-configured with well-known IP addresses of the 

root servers and knows nothing else
● DNS Request to a root server for NS record of nz

– DNS Response with nz servers including
ns4.dns.net.nz = 203.97.40.200

● DNS Request to ns4.dns.net.nz for NS record of ac.nz
– DNS Response with ac.nz servers including

ns6.dns.net.nz = 204.74.113.253
● DNS Request to ns6.dns.net.nz for NS record of auckland.ac.nz

– DNS Response with auckland.ac.nz servers including
dns1.auckland.ac.nz = 130.216.1.2

● DNS Request to dns1.auckland.ac.nz for A record of 
www.auckland.ac.nz
– DNS Response 130.216.11.202
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Making DNS scale to trillions of requests per day

● That means avoiding full lookup in most cases
● Principle: all zones have a defined TTL (time to live). 

All DNS servers and resolvers may cache any RR 
found in a DNS Response until its zone TTL expires 
– You really shouldn't be looking up .com  or .nz  all the time!
– Since TTL may be long (days), DNS updates sometimes lag 

unless somebody flushes the resolver cache
– For example, cs.auckland.ac.nz has TTL=1 day. A resolver 

that has cached it will not see any change until tomorrow
● Practice: load sharing within a zone

– Most zones of any size operate multiple parallel DNS 
servers to provide load sharing and backup

– Zone files must be kept identical between them
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Many other aspects of DNS
● This was an overview. We don't have time for:

– DNS message formats (sent over UDP)
– Reverse lookup (getting from an IP address to an FQDN)
– Dynamic DNS updates (to avoid clerical work)
– DNS Security (to prevent DNS spoofing)
– Creative uses of DNS
– DNS operational pitfalls

● DNS is the only example of a successful distributed 
database that is deployed worldwide on hundreds of 
millions of systems. Its designer (Paul Mockapetris) 
deserves great credit
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Summing up on IPv4 ...
● We know what an IPv4 packet looks like
● We know how to get an IPv4 address, default router 

address, etc. (DHCP)
● We know how to find a neighbour's LAN hardware 

address, given its IPv4 address (ARP)
● We know how to send a packet, fragment and 

reassemble packets, and handle packet level errors 
(ICMP)

● We know how to route off the LAN (RIP, OSPF, BGP4)
● We know how to find the IPv4 address of another 

system from its FQDN (DNS)
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References
● Shay 11.1, 11.2

– Bug:
● Talks about Class A, B, C addresses in present tense

● Amazon will find you good books on TCP/IP by
– Douglas E. Comer and David L. Stevens
– W. Richard Stevens
– Pete Loshin

● Many RFCs, but the older ones are hard to understand. 
Try RFC 1122, but today the only true definition is the 
running code in Linux, Windows, etc.
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