
Data integrity

Data Communications Fundamentals:
Integrity

Cristian S. Calude Clark Thomborson

July 2010

Data Communications Fundamentals 1 / 36



Data integrity

Why check integrity?

Data can be corrupted during transmission—many factors can
alter or even wipe out parts of data.

Reliable systems must have mechanisms for detecting and
correcting errors.

The capability to detect when a transmission has been changed is
called error detection. In some cases a message with errors is
discarded and sent again, but not always this is possible (e.g. in
real-time viewing). In the later case the error has to be fixed (in
real-time) and the mechanism doing this job is called error
correction.

Data Communications Fundamentals 2 / 36



Data integrity

Types of errors

There are two types of errors:

1 single-bit error, when only one bit in the data has changed,

2 burst error, when two or more bits in the data have changed.

Data Communications Fundamentals 3 / 36



Data integrity

Single-error bit

Data Communications Fundamentals 4 / 36



Data integrity

Burst error

Data Communications Fundamentals 5 / 36



Data integrity

Redundancy 1

One way to check errors is by sending every data unit twice. A
bit-by-bit comparison between the two versions is likely to identify
all errors. The system is reasonably accurate (assuming that the
errors are randomly distributed), but inefficient. Transmission time
is doubled, and storage costs have increased significantly (because
the transmitter and receiver must both retain a complete copy of
the message).

A better approach is to add a fixed extra information to each
segment (packet) of the message—this technique is called
redundancy. There is no additional information in these
error-checking bits, so they can be discarded after the check is
completed. Note: natural languages are redundant, for example it
is possible to understand most English sentences if vowels are
omitted: FCTSSTRNGRTHNFCTN.

Data Communications Fundamentals 6 / 36



Data integrity

Redundancy 2

Data Communications Fundamentals 7 / 36



Data integrity

Redundancy 3

There are tree main types of redundancy checks:

1 parity check,

2 checksums,

3 cyclic redundancy check (CRC).

Low-density parity-check (LDPC) codes were the first to allow data
transmission rates close to the theoretical maximum, the Shannon
Limit.

Data Communications Fundamentals 8 / 36



Data integrity

Parity check: one-dimensional 1

A redundant bit, called parity bit, is added to every data unit so
that the total number of 1s in the unit (including the parity bit)
becomes even (or odd).

Data Communications Fundamentals 9 / 36



Data integrity

Parity check: one-dimensional 2

Data Communications Fundamentals 10 / 36



Data integrity

Parity check: one-dimensional 3

A simple parity check will detect all single-bit errors.

It can detect multiple-bit errors only if the total number of errors is
odd.

Question: If the bit error rate (BER) is 0.1%, and errors are
equiprobable at each bit in a 999-bit message with a single parity
bit, what is the probability of an undetected error?

Data Communications Fundamentals 11 / 36



Data integrity

Parity check: one-dimensional 4

Answer: find someone who knows a little probability theory.

They should calculate the probability of no error as
(99.9%)1000 = 37%, the probability of a single error as
1000(0.1%)(99.9%)999 = 37%, the probability of a double error as(1000

2

)
(0.1%)2(99.9%)998 = 18%, the probability of a triple error as(1000

3

)
(0.1%)3(99.9%)997 = 6%, and the probability of a quadruple

error as 2%, and the probability of more than four errors as less
than 1%.

The chance of an undetected error is thus about 20% for 999-bit
messages with a single parity bit, on a channel with a BER of 0.1%.

Would you be happy with a digital communication system that
introduces errors in 20% of your messages?

Data Communications Fundamentals 12 / 36



Data integrity

Parity check: two-dimensional 1

In a two-dimensional parity check a block of bits is organised in
a table and parity is checked on both dimensions.

First one calculates the parity bit for each data unit.

Second one calculates the parity bit for each column and one
creates a new row of 8 bits—the parity bits for the whole
block.

A two-dimensional parity check significantly increases the
likelihood that a burst error will be detected.

Definition. If a message m1m2 . . .mn contains a single burst error
of length B, then its bit-errors are confined to a single subsequence
mi . . .mi+B−1 of length B.

Data Communications Fundamentals 13 / 36



Data integrity

Parity check: two-dimensional 2

Data Communications Fundamentals 14 / 36



Data integrity

Checksums 1

The method divides all data bits into 32-bit groups and treats each
as an integer value. The sum of all these values gives the
checksum. Any overflow that requires more than 32 bits is
ignored.

An extra 32 bits representing in binary the checksum is then
appended to the data before transmission.

The receiver divides the data bits into 32-bit groups and performs
the same calculation. If the calculated checksum is different to the
value received in the checksum field, then an error has occurred.

Data Communications Fundamentals 15 / 36



Data integrity

Checksums 2

A checksum is more sensitive to errors than a single-bit parity
code, but it does not detect all possible errors. For example, a
checksum is insensitive to any errors which simultaneously
increases (by any value c) one of the 32-bit groups while also
decreasing another 32-bit group by the same value c .

Data Communications Fundamentals 16 / 36



Data integrity

Cyclic redundancy check 1

The most powerful (and elaborate) redundancy checking technique
is the cyclic redundancy check (CRC).

CRC is based on binary division: a string of redundant bits—called
the CRC or the CRC remainder—is appended to the end of the
data unit such that the resulting data unit is exactly divisible by a
second, predetermined binary number.

The receiver divides the incoming data by the same number. If the
remainder is zero, the unit of data is accepted; otherwise it is
rejected.

Data Communications Fundamentals 17 / 36



Data integrity

Cyclic redundancy check 2

Data Communications Fundamentals 18 / 36



Data integrity

Error correction

Error-correcting codes include so much redundant information
with the unit block that the receiver is able to deduce, with high
likelihood, not only how many bits are in error, but also which bits
are incorrect. After these bits are inverted, all errors are corrected
in the received message.

These codes are used when the error rate is high (e.g. on a WiFi
channel). Detecting an error and than re-transmitting the message
is very inefficient on a noisy channel, because every retransmission
is likely to have errors.

Note that we cannot absolutely guarantee error correction, unless
(somehow) we can place an upper bound on the total number of
bit-errors in a message. In particular, if all of the error-check bits
may be simultaneously in error, then any error in the data bits
might not be corrected—and it may not even be detected.

Data Communications Fundamentals 19 / 36



Data integrity

Forward error correction 1

We examine the simplest case, i.e. single-bit errors. A single
additional bit can detect single-bit errors. Is it enough for
correction?

To correct a single-bit error in an ASCII character we must
determine which of the 7 bits has changed. There are eight
possible situations: no error, error on the first bit, error on the
second bit, . . . , error on the seventh bit. Apparently we need
three bits to code the above eight cases. But what if an error
occurs in the redundancy bits themselves?

Data Communications Fundamentals 20 / 36



Data integrity

Forward error correction 2

Clearly, the number of redundancy (or, error control) bits required
to correct n bits of data cannot be constant, it depends on n.

To calculate the number of redundancy bits r required to correct a
n bits of data we note that:

with n bits of data and r bits of redundancy we get a code of
length n + r ,

r must be able to handle at least n + r + 1 different states,
one for no error, n + r for each possible position,

therefore 2r ≥ n + r + 1.

Data Communications Fundamentals 21 / 36



Data integrity

Forward error correction 3

In fact we can choose r to be the smallest integer such that
2r ≥ n + r + 1. Here are some examples:

Number of data Minimum number Total bits
bits (n) of redundancy bits (r) (n + r)

1 2 3

2 3 5

3 3 6

4 3 7

5 4 9

6 4 10

7 4 11

Data Communications Fundamentals 22 / 36



Data integrity

The Hamming code 1

The Hamming code is a practical solution which detects and
corrects all single-bit errors in data units of any length.

A Hamming code for 7-bit ASCII code has 4 redundancy bits.
These bits can be added in arbitrary positions, but it is simplest if
we do this on positions 1, 2, 4, and 8. Data bits are marked with d
and parity bits are denoted by r8, r4, r2, r1.

Data Communications Fundamentals 23 / 36



Data integrity

The Hamming code 2

In a Hamming code for bit-strings of length 2n − 1, each r bit is
the parity bit for a specific combination of data bits, where the
combinations follow a binary pattern shown below:

r1: parity on bits 1, 3, 5, 7, 9, 11, 13, 15, . . ., 2n − 1.
That is, check 1 bit, skip 1 bit, check 1 bit, skip 1
bit, etc.

r2: parity on bits 2, 3, 6, 7, 10, 11, 14, 15, . . . That is,
skip 1 bit, check 2 bits, skip 2 bits, check 2 bits, skip
2 bits, etc.

r4: parity on bits 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22,
23, . . . That is, skip 3 bits, check 4 bits, skip 4 bits,
check 4 bits, skip 4 bits, etc.

. . . r2n−1 : parity on bits 2n−1 through 2n − 1. That is, skip
2n−1 − 1 bits, and check 2n−1 bits.

Data Communications Fundamentals 24 / 36



Data integrity

The Hamming code 3

Each data bit may be included in more than one calculation.

Data Communications Fundamentals 25 / 36



Data integrity

The Hamming code 4

This picture describes the calculation of r bits for the ASCII value
of 1001101: start with data and repeatedly calculate, one by one,
the parity bits r1, r2, r4, r8:

Data Communications Fundamentals 26 / 36



Data integrity

The Hamming code 5

Imagine that instead of the string 10011100101 the string
10010100101 was received (the 7th bit has been changed from 1
to 0).

The receiver recalculates 4 new parity bits using the same sets of
bits used by the sender plus the relevant parity r bit for each set.
Then it assembles the new parity values into a binary number in
the order used by the sender, r8, r4, r2, r1. This gives the location
of the error bit. The sender can now reverse the value of the
corrupted bit!

Data Communications Fundamentals 27 / 36



Data integrity

The Hamming code 6

Data Communications Fundamentals 28 / 36



Data integrity

Multiple-bit error correction 1

The basic Hamming code cannot correct multiple-bit errors, but
can easily be adapted to cover the case where bit-errors occur in
bursts.

Burst errors are common in satellite transmissions, due to sunspots
and other transient phenomena which, occasionally, greatly
increase the error rate for a brief period of time.

Scratches on CDs and DVDs introduce burst errors into the data
read from these disks.

Data Communications Fundamentals 29 / 36



Data integrity

Multiple-bit error correction 2

To protect a message of length N against a single burst error of
length B ≤ C , we can break it up into groups (columns) of length
C , then transmit it in transposed order with a Hamming code for
each row.

No burst error of length B < C can introduce more than one bit
error in a row, so the row-wise Hamming codes are sufficient to
correct a single burst error.

On the next slide, we show an example of the technique with
N = 36 data bits. These bits are organised into columns of length
C = 6, where the 6 data bits in each row are protected by a 5-bit
Hamming code. A burst error of length 5 has affected two columns
in our example, but has introduced at most one error in each row –
so this error can be corrected by the Hamming code for the
affected rows.

Data Communications Fundamentals 30 / 36



Data integrity

Multiple-bit error correction 3

Data Communications Fundamentals 31 / 36



Data integrity

Multiple-bit error correction 4

Hamming codes are pretty easy to understand, and they are pretty
easy to implement – but they are not an effective way to protect
very long messages against errors in arbitrary positions (i.e.
multiple bit errors that aren’t in bursts).

Much more powerful error-correcting codes were developed by
Bose, Chaudhari, and Hocquenghem in 1959-60. These are the
BCH codes. The Reed-Solomon codes (also developed in 1960) are
a very important sub-class of the BCH codes. Efficient decoding
algorithms, suitable for special-purpose hardware implementation,
were developed in 1969; these were used in satellite
communications.

Nowadays, Reed-Solomon error-correction is used routinely in
compact disks and DVDs.

Data Communications Fundamentals 32 / 36



Data integrity

Multiple-bit error correction 5

A Hamming code uses r = log n bits to guard n data bits, so we
can send only 2n different messages in a Hamming-protected
message of length n + r .

This might, or might not, be the appropriate ratio of
error-checking (redundant) symbols to information-carrying
symbols for this channel. Let’s develop a little more theory...

Data Communications Fundamentals 33 / 36



Data integrity

Multiple-bit error correction 6

The Hamming distance between two m-bit strings is the number
of bits on which the two strings differ.

Given a finite set of codewords one can compute its minimum
distance, the smallest value of the distance between two codewords
in the set.

If d is the minimum distance of a finite set of codewords, then the
method can detect any error affecting fewer than d bits (such a
change would create an invalid codeword) and correct any error
affecting fewer than d/2 bits.

Data Communications Fundamentals 34 / 36



Data integrity

Multiple-bit error correction 7

For example, if d = 10, and 4 bits of a codeword were damaged,
then the string cannot possibly be a valid codeword: at least 10
bits must be changed to create another valid codeword.

If the receiver assumes that any error will affect fewer than 5 bits,
then she needs only to find the closest valid codeword to the
received damaged one to conclude that it is the correct codeword.
Indeed, any other codeword would have had at least 6 bits
damaged to resemble the received string.

When designing a code that can correct d/2 or fewer errors in a
message, we must select codewords which are at least Hamming
distance d from each other. It’s an interesting combinatorial
puzzle... randomly-chosen codebooks do pretty well (but would
require decoders to use large – and therefore slow and/or expensive
– lookup tables)...

Data Communications Fundamentals 35 / 36



Data integrity

Error correction on the Internet is performed at multiple levels

Each Ethernet frame carries a CRC-32 checksum. The
receiver discards frames if their checksums do not match.

The IPv4 header contains a header checksum of the contents
of the header (excluding the checksum field). Packets with
checksums that don’t match are discarded.

The checksum was omitted from the IPv6 header, because
most current link layer protocols have error detection.

UDP has an optional checksum. Packets with wrong
checksums are discarded.

TCP has a checksum of the payload, TCP header (excluding
the checksum field) and source- and destination addresses of
the IP header. Packets found to have incorrect checksums are
discarded and will eventually be retransmitted (when the
sender receives three identical ACKs, or times out).

Data Communications Fundamentals 36 / 36


