Name:

ID:

THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2010 Campus: City

COMPUTER SCIENCE Modern Data Communications (Time allowed: 45 minutes)

NOTE: Examination conditions: Closed book, no calculators permitted.

Attempt ALL questions. Total possible: 50 marks.

Please write your name and UPI on all pages of this answer book.

In the questions on security protocols,

- *a* and *b* are public keys for Alice and Bob,
- *a*' and *b*' are the corresponding private keys,
- t_a and t_b are timestamps,
- *E* is a public-key encryption function, and *D* is the corresponding decryption function.

Name: ID:

- A. The following questions refer to the series of three messages (M1-M3) described below.
 M1. Alice → Bob: E_b("Hi Bob, I have a new public key. Please use my new key c.", a, t_a)
 M2. Bob → Alice: E_c("Hi Alice, no worries, I have updated my records.", t_a, t_b)
 M3. Alice → Bob: E_b("Thanks!", a, t_a, t_b)
 - If Eve is able to intercept messages, will she know the values of *a*, *b*, *c*, *t_a*, and *t_b*? Explain briefly.
 (5 marks)

2. If Eve is able to fabricate messages, will she be able to impersonate Alice? Explain briefly. (5 marks)

- **B.** The following questions refer to a Hamming code with the following properties.
 - Each codeword is 7 bits long, with four data bits (d1, d2, d3, d4) and three check bits (r1, r2, r4).
 - Check bit r1 is even parity on d1 and d3.
 - Check bit r2 is even parity on d2 and d3.
 - Check bit r4 is even parity on d4.
 - 3. If we are transmitting d1 = 1, d2 = 1, d3 = 1, d4 = 1, what are the values of r1, r2, and r3? Show your work.
 (5 marks)

Name: ID:

4. If we receive d1 = 0, d2 = 0, d3 = 0, d4 = 0, r1 = 0, r2 = 0, r3 = 1, what is the corrected data? Show your work. (5 marks)

5. Is there any chance of an undetected error in a codeword? Explain briefly.

(5 marks)

C. Consider the following code:

0	0000	4	0100	8	1000	С	1100
1	0001	5	0101	9	1001	D	1101
2	0010	6	0110	А	1010	Е	1110
3	0011	7	0111	В	1011	F	1111

6. Is this code prefix-free? Explain briefly.

(5 marks)

7. We can use this code to transmit a sequence of positive integers, in the following way. Each integer is represented as a series of symbols in the range 0-E. The symbol F indicates the end of the string that represents an integer. The value of each integer is the sum of the (hexadecimal) values of the symbols (in the range 0-9 and A-E) in the string for that integer. For example, the sequence (14, 9, 0, 15) can be represented as the 8-symbol string "EF9FFE1F", which is encoded as 1110 1111 1001 1111 1110 0001 1111. Use this method to encode the sequence (14, 30). Show your work. (5 marks)

Name:

ID:

- **D.** The following questions refer to a channel that can carry analog signals from 20 Hz to 10020 Hz with a SNR of 30 dB.
 - 8. If we used amplitude shift keying (ASK) on this channel, with one bit per symbol at a frequency of 1 kHZ, what is its bit rate? Explain briefly. (5 marks)

9. Can we use amplitude shift keying with 1 bit per symbol, at a frequency of 10 kHz, on this channel? Hint: use the Nyquist theorem. To receive full credit, you must use the word "Baud" correctly in your answer. (5 marks)

10. What is the Shannon capacity (maximum bitrate) of this channel? Show your work.

(5 marks)