THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2008 Campus: Tamaki

COMPUTER SCIENCE

Data Communications Fundamentals

(Time allowed: 45 minutes)

NOTE:

- Attempt *all* questions in the space provided. Extra space for answers is available on page 5
- This mid-semester test will contribute 50% to your coursework mark, and 15% to your overall course mark.
 - Indicated marks are out of a total of 100 marks (about two per minute).
- No marks will be awarded if you merely state a correct answer. To obtain full credit, your script must clearly explain *why* your answer is correct.
- If you require additional information in order to answer a question, you should make a reasonable assumption as required for your answer, and you should explain your assumption on your script.

Surname: Forenames:

Student ID:

Question No.	Possible marks	Awarded marks
1. Coding	40	
2. Kraft's theorem	30	
3. Huffman's coding	30	
Total	100	

2

Student ID:

1. Coding

(b)

[40 marks]

(a) Define the following notions:

i.	Code	[10 marks]
	A code is the assignment of a unique string of characters (a code each character in an alphabet.	word) to
ii.	Prefix Code	[10 marks]
	A prefix code (or prefix-free code) is a code in which no codew proper prefix of another codeword.	vord is a
iii.	Jniquely Decodable Code	[5 marks]
	A code is uniquely decodable if the encoding of every possible using that code is unique.	cleartext
Is th	assignment	
	$1 \longrightarrow a$	
	$0 \longrightarrow b$	
	$10 \longrightarrow c$	
	$01 \longrightarrow d$	
a co	e?	[10 marks]
	The assignment is a code because different letters have been assigned codewords.	different

(c) Is the assignment defined at (b) a prefix-free (prefix code)?

[5 marks]

As 1 is a proper prefix of 10, the code in not prefix-free.

Student ID:

2. Kratf's theorem

[30 marks] [10 marks]

(a) State Kraft's theorem.

Kraft's theorem. A prefix code exists for codewords lengths l_1, l_2, \ldots, l_N if and only if $2^{-l_1} + 2^{-l_2} + \cdots + 2^{-l_N} \leq 1$.

(b) Check whether the numbers 10, 2, 5 satisfy the inequality in Kraft's theorem. [10 marks]

3

 $2^{-10} + 2^{-2} + 2^{-5} = 1/1024 + 1/4 + 1/32 < 1$, so the numbers 10, 2, 5 satisfy the inequality in Kraft's theorem.

(c) Construct a prefix binary code for which the codewords lengths are exactly: 10, 2, 5. [10 marks]

Reorder the lengths 10, 2, 5 in increasing order, 2,5,10 and then, using Kraft's construction, get the prefix code: 00,01000,1000000000.

3. Huffman's coding

[30 marks]

Devise two correct Huffman trees and their corresponding codewords for the letters A, B, C, D, E with frequencies given in the following table:

Letter	Frequency	
A	15%	
В	15%	
C	10%	
D	10%	
E	50%	

QUESTION/ANSWER SHEET

Student ID:

Write the letters in increasing order of their frequencies, say C, D, A, B, E, and use Huffman's procedure: C (10) D (10) A (15) B (15) E (50) CD (20) AB (30) E (50) CDAB (50) E (50) CDABE (100) so the code is Letter Code 101 А В 100 С 111 D 110 Е 0 If we write the letters in increasing order of their frequencies as D, C, A, B, E, and use Huffman's procedure: D (10) C (10) A (15) B (15) E (50) DC(20) AB (30) E (50) E (50) DCAB (50) DCABE (100) so the code is Letter Code А 101 В 100 С 110 D 111 Е 0

4