
1

CS314- 24/25

IPv4: Internet Protocol version 4

● Concept

● Addressing

● Packet format

● Fragmentation

● Control messages (ICMP)

● Getting an address (DHCP)

● Finding neighbours (ARP)

● Naming things (DNS)

2

Concept of a connectionless datagram (1)

● The idea goes back to 1962, and the current version of
IP was defined in the late 1970s

● Share expensive links by mixing variable-length
packets sent between logical addresses

– Much more dynamic than hardware multiplexing or circuit
switching

– As we've seen, allows a variety of routing mechanisms

3

Concept of a connectionless datagram (2)

● Share expensive links by mixing variable-length
packets sent between logical addresses
– Advantages: sharing costs, universal connectivity, great

flexibility

– Disadvantages: variable response time, risk of congestion or
packet loss

● The success of the Internet shows that the advantages
far outweigh the disadvantages

4

Logical addressing

● The source and destination addresses of IP packets are
logical, not physical

– Assigned by software
● and can be changed

– Assigned to interfaces (not whole computers)

– Must be unique, for routing to be possible

– Must be related to topology, for routing to scale

– Are also used as unique identifiers, as we'll see later

– One interface can have multiple addresses (rare in IPv4)

5

IPv4 Address Format

● In the abstract, it's just a 32 bit binary number:
01010011 11001010 10010110 00000010

● Conventionally written in “dotted decimal:”
83.202.150.2

● Upper layers of software have no business treating
addresses as anything but meaningless bit strings

● But to the routing system, addresses have some real
meaning

6

Location versus Identity
+-+
| IPv4 Address |
+-+

<----- high order bits indicate | low order bits indicate --->
 location for routing | identity on the LAN
 |
 NO FIXED BOUNDARY

● For example, in 10.1.2.17, you cannot assume that the
network is 10.1.2.0/24
– i.e. a subnet with 256 addresses

● It might equally well be, e.g., 10.1.2.16/28
– i.e. a subnet with 16 addresses

+-+
|0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1|
+-+

7

Old-fashioned IPv4 addressing (1)

● In the early years of IPv4 (up to about 1993),
addresses were divided into three classes
– Class A, user site was given a /8 prefix and had 24 bits free to

assign locally (16M addresses)

– Class B, /16 prefix with 16 local bits (65k addresses)

– Class C, /24 prefix with 8 local bits (256 addresses)

● This was scrapped because it led to inefficient use of
address space and to sparse routing tables

8

Old-fashioned IPv4 addressing (2)

● Addresses are now assigned in very large blocks to
ISPs and sub-divided among their customers

– CIDR (classless inter-domain routing) was in fact brought in
together with BGP4

– Because of CIDR, you can't tell how long the prefix is by
looking at the address

– Instead (e.g. in RIPv2 packets) you specify the complete
prefix, e.g. 130.216.32.0/24

9

Special types of IPv4 address (1)
● So far we have discussed unicast addresses

– That means an address used to send a packet to exactly one
interface

● IP also supports multicast addressing and routing
– That means an address used to send a packet to a large set of

interfaces in parallel

– Multicast IPv4 addresses are under prefix 224/4:
+-+
|1 1 1 0 x|
+-+

● The broadcast address is 255.255.255.255 but it only
works locally (it's blocked by routers)

10

Special types of IPv4 address (2)

● Sometimes a unicast address is used as an anycast address

– Used to send a packet to a group of interfaces, but only one should
respond, normally to provide redundant servers

– There is no way to tell an anycast address by looking at it;
they have to be manually coded into the routing system

● 0.0.0.0 means “this host”

– “host” is internet jargon for “computer”

– 0.0.0.0/0 is also the way a default route is identified

● 127.0.0.1 is the loopback address (send packets to yourself)

● 169.254.0.0/16 is “link local” space for isolated networks
 (RFC 3927)

11

Special types of IPv4 address (3)

● Three address ranges are reserved for private use
within a site
– 10.0.0.0/8

– 172.16.0.0/12

– 192.168.0.0/16

● Since anybody can use these addresses, they are
ambiguous and must never be routed off-site

● (This is not a complete list of special addresses. For
a complete list, see RFC 3330 at www.rfc-editor.org)

12

IPv4 Packet Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Version| IHL | DS Field | Total Length |
+-+
| Identification |Flags| Fragment Offset |
+-+
| Time To Live | Protocol | Header Checksum |
+-+
| Source Address |
+-+
| Destination Address |
+-+
| Options | Padding |
+-+
| Payload... |
+-+
 ...
+-+
| ...end of Payload |
+-+

13

Mapping to Layer 2

● The IP packet has to be sent inside a Layer 2 frame,
such as an Ethernet frame

● The exact way this is done depends on the type of
Layer 2 link

– e.g. using Ethertype 0x0800 on Ethernet

 Link Layer IP packet Link Layer
 Header Trailer (if any)

 Layer 2 Layer 3 Layer 2

14

Explanation of IPv4 header (1)
● Version: 4

● IHL (IP header length)
– header length (bytes/4, i.e. 32 bit words)

● DS (differentiated services) Field, previously known as
TOS (type of service) Field
– 8 bits used to manage quality of service

● Total Length
– length of IP header plus IP payload (bytes)

● Identification, Flags and Fragment Offset
– used for packet fragmentation, see later

15

Explanation of IPv4 header (2)

● Time To Live (often called TTL)
– actually a hop count, decreased by 1 at each router. The packet

is discarded if TTL=0, to prevent loops

● Protocol
– a value that defines the type of payload (TCP, UDP, etc.)

● Header checksum
– 16 bit 1's complement of 16 bit 1's complement sum of all other

header fields

– recalculated by each router, since TTL changes

● Source and Destination addresses
– as defined previously

16

IPv4 Header Options
● Most packets don't have them

– New options are hard to deploy since old routers don't like them

● All options start with an option type byte
+--------+
|CxxNNNNN|
+--------+

– C = 1 copied into each fragment, in case of fragmentation

– C = 0 not copied

– xx = option class (control or debugging)

– NNNNN = option number

● Most options have more bytes
+--------+--------+--------+ -+
|CxxNNNNN| size | data...| ... |
+--------+--------+--------+ -+

17

Example IPv4 Header Options
● Record Route

– each router inserts its address in the option
– generally blocked due to security worries

● Loose Source Route
– allows the sender to specify the route
– also performs 'record route'
– generally blocked due to security worries

● Router Alert
– tells each router to check further into the packet instead of

just forwarding it
– a good way to slow your packet down

● Generally speaking, header options were not a big
success in the IPv4 design

18

Fragmentation
● An IPv4 host is required to handle datagrams of at

least 576 bytes including the IPv4 header
● A given network path has a Maximum Transmission

Unit (MTU) size, normally more than 576
– Somewhat less than Ethernet size is common, 1400-1500 bytes
– Fragmentation is designed to work for link MTUs down to 68 bytes

● Two problems to send a packet > link MTU size
 1. How to know what the MTU size is?

 2. How to split the large packet up?

● For the moment, assume we know the MTU size
● The hard part isn't fragmentation; it's re-assembly

19

The fragment header
● The sender splits up the packet; each fragment has a

fragment header:
+-+
| Identification |Flags| Fragment Offset |
+-+

– Identification: all fragments of the same packet have the same value
– Flags

● one unused bit
● DF bit - if set, Don't Fragment this packet
● MF bit - if set, More Fragments will follow

– Fragment offset: how far into the packet this fragment begins,
in units of 8 bytes

● If a sender (usually a router) knows that the next hop MTU is
too small, it splits the packet into fragments

20

Reassembling fragments
● Routers don't reassemble fragments; that's left to the final

receiver
● If you receive a packet with an unknown non-zero

Identification value, you must
– reserve a reassembly buffer
– tag the buffer with the Identification value
– store the fragment in the buffer at the given offset (remembering

that the first fragment may not arrive first and the last fragment
may not arrive last)

– as further fragments with the same Identification arrive, store them
in the buffer

– when all fragments have arrived, act as if the whole packet had
just arrived

– if not all fragments arrive after a timeout, discard the buffer

21

Problems with fragmentation
● Double fragmentation

– if MTU reduces twice along the path, fragmentation could happen
twice

● Silly fragmentation
– if the actual MTU is just a bit shorter than each packet we'll keep

sending one long fragment and one very small one
● Reassembly is a slow process
● Interferes with TCP flow control
● On gigabit networks, the 16 bit ID field can recycle in

less time than the reassembly timeout
– disastrous, as fragments of a new packet may be mistaken for lost

fragments of an old one

22

ICMP: Internet Control Message Protocol

● Used for low-level management functions in an IP
network

● Sent as IP packets with Protocol = 1

● First byte of payload is an ICMP Message Type

● ICMP packets typically report errors in the processing
of IP packets

– To avoid recursion of messages about messages,
no ICMP messages are sent about ICMP messages

● Now three example ICMP messages ...

23

ICMP “Echo” and “Echo Reply”
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0| Checksum |
+-+
| Identifier | Sequence Number |
+-+
| Data (anything) ...
+-+-+-+-+-+-+-+-+-+-+-+-

Type
 8 = Echo, 0 = Echo Reply
Identifier
 A random value used to match echo requests and replies
Sequence Number
 Counts up, to match requests and replies in series
Data
 Should be sent back without change

Note: This is what ping uses.

24

ICMP “Destination Unreachable”
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|0 0 0 0 0 0 1 1| Code | Checksum |
+-+
| unused |
+-+
| IP Header + first 64 payload bits of failed packet |
+-+

Code
 0 = net unreachable
 1 = host unreachable
 2 = protocol unreachable
 3 = port unreachable
 4 = fragmentation needed but DF set
 5 = source route failed
Checksum
 16 bit 1's complement checksum of ICMP message

25

ICMP “Parameter Problem”

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|0 0 0 0 1 1 0 0| Code | Checksum |
+-+
| Pointer | unused |
+-+
| IP Header + first 64 payload bits of failed packet |
+-+

Code
 0 = pointer points to error
 No other values defined
Pointer
 Byte number in failed packet where problem was found

26

Dynamic Host Configuration Protocol
● For many years, addresses had to be assigned by

hand and configured by hand
– Obviously impractical once PCs appeared by the million
– DHCP appeared by 1993

● DHCP allows a machine to ask a central server for an
address (and other info) when it reboots
– May be a different address each time, which is OK for clients but

inconvenient for servers
● First step is to send a request to the DHCP server

– But after a reboot, you don't know the address
of the DHCP server and you don't have an IP
source address to send from. A bit of a puzzle

Oops! DHCP is important, but not detailed in Shay.

27

Bootstrapping DHCP
● Client starts by broadcasting a DHCP DISCOVER

message on its LAN
– Source IP address is 0.0.0.0
– Destination IP address is 255.255.255.255
– Destination hardware address is LAN broadcast
– DISCOVER message includes client's LAN hardware address

● DHCP server will catch the broadcast and reply with a
DHCP OFFER message
– An OFFER message includes a fresh IP address for the client
– Source address is the DHCP server's own IP address
– Destination IP address is the offered IP address
– Destination hardware address is the one supplied by the client

28

Some DHCP details
● DHCP is built up from an older bootstrap protocol

called BOOTP
– BOOTP and DHCP messages are sent over UDP (to be

discussed later), not raw IP
● Either the DHCP server is on the LAN, or a 'DHCP

relay' (built into a router) will catch the DHCP
DISCOVER and send it on

● There can be several DHCP servers and several
DHCP OFFER messages
– The client must choose one of them

● DHCP addresses have a lifetime (known as a lease)
– The client must renew after that lifetime expires

29

DHCP message types

● DISCOVER, OFFER - as above

● REQUEST - client requests to accept OFFER or extend
lease

● ACK - server accepts REQUEST

● NAK - server denies REQUEST or expires lease

● DECLINE - client rejects OFFER

● RELEASE - client has finished with address

● INFORM - client has address, but requests other
parameters

30

Normal DHCP sequence

Client

DISCOVER

(wait)

REQUEST

(wait)

(initialise)

(work)...

RELEASE

(shutdown)

Server

(reserve address)

OFFER

(commit)

ACK

(re-use address)

31

Other information (optionally) supplied by DHCP

● DHCP now has >100 optional parameters
– Default router address(es) ('default gateway')
– Static routes
– Local net mask
– DNS server address
– Parameters for MTU discovery
– Parameters for router discovery
– Type of Ethernet encapsulation
– ...
– Mail server addresses
– Timezone information
– Physical location data (street address etc.)

32

Finding Neighbours: Address Resolution Protocol
● Suppose you have an IP address from DHCP as well

as the IP address of the default router
– You: 130.216.1.17
– Router: 130.216.1.1

● By definition, the default router is on your LAN, but
how do you know its Ethernet address?
– That is the problem ARP solves

● Concept
– Broadcast an ARP Request asking for 130.216.1.1
– That host unicasts an ARP Reply
– Cache the Ethernet address found in the Reply

Oops! ARP is important, but not detailed in Shay

33

ARP message format (on Ethernet)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Hardware type = 1 | Protocol type = 0x0800 |
+-+
| HwAddrLength | ProtoAddLgth | ARP opcode (Request/Reply) |
+-+
| Sender Hardware Address (48 bits) |
+-+
| |
+-+
| Sender Protocol Address (32 bits) |
+-+
| Target Hardware Address (48 bits) |
+-+
| |
+-+
| Target Protocol Address (32 bits) |
+-+

34

ARP message format notes

● ARP is carried directly over Layer 2, not over IP,
using Ethertype 0x0806

● Hardware type, etc., allow for use over other
LAN types than Ethernet and other protocols
than IPv4

● Opcodes: Request = 1, Reply =2
● Target Hardware Address is blank in Request

and filled in in the Reply
– Target and Sender are swapped between Request and

Reply

35

ARP in practice

● Clear ARP cache on restart to avoid stale data

● Two Replies to one Request - disaster!

– Somehow, two hosts believe they have the same address

– Should not trust either of the replies

● When a host disconnects, DHCP might give its address
to someone else - but it's still in your ARP cache -
disaster!

– ARP cache timeout must be short compared to DHCP hold
time

– Unsolicited ARP with Sender=Target refreshes the cache

● ARP Reply may come from a proxy (e.g. a bridge)

36

Let's see where we are ...
● We know what an IPv4 packet looks like
● We know how to get an IPv4 address, default router

address, etc. (DHCP)
● We know how to find a neighbour's LAN hardware

address, given its IPv4 address (ARP)
● We know how to send a packet, fragment and

reassemble packets, and handle packet level errors
(ICMP)

● We know how to route off the LAN (RIP, OSPF, BGP4)
● Missing: how do we find the IPv4 address of another

system from its name?

37

Naming Things: DNS (Domain Name System)

● Basic concept: unique names in a structured tree
– Tree is string-based, n-ary (not binary)

ibm

org

ac

(root)

 Top Level
Domains

en

comcom

wikipedia

www

massey

cs www

nz

auckland

www

www

38

DNS names
● www.auckland.ac.nz and www.cs.auckland.ac.nz

are FQDNs - Fully Qualified Domain Names
● They are unique (i.e. represent different leaves on the

DNS tree)
– The DNS must have a unique root
– Names must be registered to guarantee uniqueness

● TLD (Top Level Domain) names are registered world-
wide by IANA (Internet Assigned Numbers Authority)

● Each TLD such as com or nz has its own registry
● Subdomains such as ac.nz and ibm.com manage their

own registries

39

DNS is a massive Distributed Database

● The database contains hundreds of millions of entries of
several types, called RRs (resource records)

● The most important RR type today is an A record
– The A record for www.cs.auckland.ac.nz contains 130.216.33.106

● When a client machine in Switzerland asks its local
DNS server for that A record, how does it get there from
Auckland?
– Obviously, it is impractical for every one of the millions of DNS

servers in the world to be pre-loaded with hundreds of millions
of RRs

– Obviously, it would be horribly slow if every lookup of every
FQDN had to be sent back to the original registry that
registered it

40

Divide and Conquer: DNS Zones

● The namespace is divided into hierarchical zones

ibm

org

ac

(root)

en

comcom

wikipedia

www

massey

cs www

nz

auckland

www

www

41

Authoritative name servers
● Each zone contains NS records for the authoritative

name servers for its child zones
– The root has an NS record for nz
– nz has an NS record for ac.nz
– ac.nz has an NS record for auckland.ac.nz
– auckland.ac.nz has an NS record for cs.auckland.ac.nz
– cs.auckland.ac.nz has no NS records - it is a leaf zone

● The authoritative name servers are configured with all
RRs for all FQDNs in their zone
– But not for FQDNs in child zones; those are delegated
– Configuration is often done from an equipment database,

and requires careful clerical work

42

Finding the RRs for a given FQDN
● Our problem is reduced to finding the address of the

authoritative server of the domain containing those
RRs

● Every host includes code called a resolver which takes
an FQDN and returns an RR

– A full resolver interacts with mutiple DNS servers in
sequence

– A simple resolver interacts with one “recursive” DNS server

– In both cases, the lookup process is the same

– Resolver, or recursive server, sends DNS Request
messages

– Servers send DNS Response messages

43

Illustrative full DNS lookup

● Resolver is pre-configured with well-known IP addresses of the
root servers and knows nothing else

● DNS Request to a root server for NS record of nz
– DNS Response with nz servers including

ns4.dns.net.nz = 203.97.40.200
● DNS Request to ns4.dns.net.nz for NS record of ac.nz

– DNS Response with ac.nz servers including
ns6.dns.net.nz = 204.74.113.253

● DNS Request to ns6.dns.net.nz for NS record of auckland.ac.nz
– DNS Response with auckland.ac.nz servers including

dns1.auckland.ac.nz = 130.216.1.2
● DNS Request to dns1.auckland.ac.nz for A record of

www.auckland.ac.nz
– DNS Response 130.216.11.202

44

Making DNS scale to trillions of requests per day

● That means avoiding full lookup in most cases
● Principle: all zones have a defined TTL (time to live).

All DNS servers and resolvers may cache any RR
found in a DNS Response until its zone TTL expires
– You really shouldn't be looking up .com or .nz all the time!
– Since TTL may be long (days), DNS updates sometimes lag

unless somebody flushes the resolver cache
– For example, cs.auckland.ac.nz has TTL=1 day. A resolver

that has cached it will not see any change until tomorrow
● Practice: load sharing within a zone

– Most zones of any size operate multiple parallel DNS
servers to provide load sharing and backup

– Zone files must be kept identical between them

45

Many other aspects of DNS

● This was an overview. We don't have time for:
– DNS message formats (sent over UDP)
– Reverse lookup (getting from an IP address to an FQDN)
– Dynamic DNS updates (to avoid clerical work)
– DNS Security (to prevent DNS spoofing)
– Creative uses of DNS
– DNS operational pitfalls

● DNS is the only example of a successful distributed
database that is deployed worldwide on hundreds of
millions of systems. Its designer (Paul Mockapetris)
deserves great credit

46

Summing up on IPv4 ...
● We know what an IPv4 packet looks like
● We know how to get an IPv4 address, default router

address, etc. (DHCP)
● We know how to find a neighbour's LAN hardware

address, given its IPv4 address (ARP)
● We know how to send a packet, fragment and

reassemble packets, and handle packet level errors
(ICMP)

● We know how to route off the LAN (RIP, OSPF, BGP4)
● We know how to find the IPv4 address of another

system from its FQDN (DNS)

47

References
● Shay 11.1, 11.2

– Bug:
● Talks about Class A, B, C addresses in present tense

● Amazon will find you good books on TCP/IP by

– Douglas E. Comer and David L. Stevens

– W. Richard Stevens

– Pete Loshin

● Many RFCs, but the older ones are hard to understand.
Try RFC 1122, but today the only true definition is the
running code in Linux, Windows, etc.

