
Lectures 12, 13, 14:
Connections, Protocols,
Link Control, LANs

Nevil Brownlee

314 S2T 2007

314, August 2007 12 - Connections 2

Transmission Modes 4.3

● Parallel (many wires) or Serial (one wire)
● Direction-related

314, August 2007 12 - Connections 3

Transmission Modes 4.3
● Time-related

– asynchronous: may start/stop at any time

– synchronous: uses a continuous clock

– isochronous: imposes gaps to match transmission rates

314, August 2007 12 - Connections 4

Interface Standards 4.4

● There are lots of 'standard' interfaces for
connecting devices together

● Shay has good descriptions of:
– EIA-232 (RS-232) <= we only look at this one
– USB
– IEEE 1394 (Firewire)
– X.21



314, August 2007 12 - Connections 5

RS-232 Serial Interface

● Connects DTE (computer) to DCE (modem)

● 25-pin connector, we normally use only 9

314, August 2007 12 - Connections 6

RS-232 Serial Interface
● Null Modem for connecting two DTEs

● Not used here: pin 22 = Ring Indicator, pin 1 = Protective Earth

314, August 2007 12 - Connections 7

Multiplexing 4.5

● Ways of carrying several different connections
over a common link

● Frequency-Division (FDM):

314, August 2007 12 - Connections 8

Multiplexing (2)

● Time-Division (TDM):

● Statistical Multiplexing
– Much the same as TDM, but doesn't use fixed time
allocations (slots)

– Receiver must be able to identify incoming frames



314, August 2007 12 - Connections 9

Multiplexing (3)

● Wave-Division (WDM):

314, August 2007 12 - Connections 10

Flow Control 8.1

● Need for flow control
– how can we send long messages, e.g. big files?
– what happens when messages get lost, or are
corrupted when they arrive?

– what if the receiving host is busy, i.e. slow to accept
incoming data?

– how will a sender cope with lost (undelivered)
messages?

– will both hosts be able to send/receive at the same
time?

314, August 2007 12 - Connections 11

What is Flow Control?
● Messages are broken into frames
● Flow Control defines

– “the way frames are sent, tracked and controlled”
– may be simple or complex

● Many examples of protocols around us, e.g.
traffic rules (Road Code), 'phone conversations

● How can we be sure that a protocol is correct?
– works properly
– will never suddenly 'freeze'

314, August 2007 12 - Connections 12

Signaling 8.2

● Receiver tells sender when it's ready to receive
● Prevents receiver
buffer overflow

● DTE (computer) -
DCE (modem)
via RS-232
interface ..



314, August 2007 12 - Connections 13

X-ON/X-OFF

● Over the DTE-DCE path ..
– send ASCII X-OFF (0x13, ^S) to stop transmission
– send X-ON (0x11, ^Q) to start it again

● This is in-band signalling, i.e. send signal on
same path as data

● How quickly does the transmitter stop sending?
● How can we send 0x11 or 0x13 to the receiver?

314, August 2007 12 - Connections 14

Frame-oriented Control 8.3

● Idea is to break large sequences of chars into
smaller frames

● Frames are sent from one user (higher protocol
layer) to another

● Unrestricted protocol
– simply assume it's always safe to send
– not really a useable protocol!

314, August 2007 12 - Connections 15

Stop-and-Wait

● Sender:
– send frame, wait for ACK or NAK
– if NAK, send frame again. Repeat unil get ACK

● Receiver:
– receive frame, check for errors
– if OK, send ACK. otherwise send NAK

● No way to handle lost (therefore not ACKed)
frames

314, August 2007 12 - Connections 16

Protocol Efficiency: Effective data rate
● Shay derives formulae, we “just work it out”
● Remember, velocity = distance / time

– in wire or fibre, v is about 2/3 the speed of light,
i.e. 2x108 m/s

– Auckland-Hamilton is about 120 km, so a byte takes
(120 x 103)/(2 x 108) = 0.6 ms to get there

– If we send a 1500-Byte frame at 10 Mb/s, it will take
(1500 x 8) /(10 x 106) = 1.2 ms to transmit

– Assume that ACK is a 64-Byte frame, 0.0512 ms

– Therefore, to send frame and receive ACK takes
roughly 1.25 + 2 x 0.6 = 2.45 ms

– Effective bit rate is (1500 x 8)/(2.45 x 10-3) = 4.9 Mb/s



314, August 2007 12 - Connections 17

Sliding Window 8.4

314, August 2007 12 - Connections 18

Sliding Window / Go-back-n

● Idea here is to have a maximum of i frames on
the wire at any time. i is the window size

● Each frame has a sequence number, sender
must hold each frame until it is ACKed

● Sender keeps track of w, sequence number of
first (of i frames) in window. When frame w is
ACKed, sender can forget it

● Window does not move until earliest frame has
been ACKed

314, August 2007 12 - Connections 19

Go-back-n

● Shay develops a frame format for two-way
communication

● Data frame in one direction can carry an ACK for the
other direction, i.e. a piggy-backed ACK

● To handle lost frames, he has an ACK timer at
the receiver ..

● and a frame timer at the transmitter

314, August 2007 12 - Connections 20

Sequence Numbers

● Sequence Numbers fit in a K-bit field;
there can be at most 2K frames in the window

● K should be big enough to handle the maximum
window size we expect to use

● They are unsigned numbers, and can wrap,
i.e. count through 2K-2, 2K-1, 0, 1, 2, ...
You can think of the sequence numbers as
being arranged in a circle

● What happens if a host crashes and restarts?

● Some protocols used lollipop sequence numbering to
handle restarts! (see Wikipedia)



314, August 2007 12 - Connections 21

Selective Repeat 8.5

314, August 2007 12 - Connections 22

Selective Repeat (2)
● Any frame can be ACKed, specifying it's sequence
number

● Frames arriving out of sequence are buffered until
earlier frames have been ACKed

● When a NAK is received, only the NAKed frame is
resent (Go-Back-n resent the whole window!)

● If a frame timer expires (no ACK or NAK), only the
timed-out frame is resent

● Piggy-backed ACK acknowledges the last frame
delivered to the user, so the sender knows that all
frames up to that one have been safely received

314, August 2007 12 - Connections 23

Efficiency of Sliding Window Protocols 8.6
● For a particular window size, message size,
transmission speed and link distance, we can
“just work it out,” as we did for stop-and-wait

● We assume no lost or damaged packets !
● Two cases

– we get our first message ACKed before we've sent
a whole window. That allows us to keep sending at
full link speed

– we have to wait for an ACK after sending a window,
then we can send another window. Shay has a
diagram illustrating this ..

314, August 2007 12 - Connections 24

Sending whole window and waiting



314, August 2007 12 - Connections 25

Numerical examples
● Sending 100x 1500B frames in 20-frame windows,
Auckland-Hamilton on a 10 Mb/s link

– as for Stop-and-Wait: 1.2ms to send frame, 1.2ms
round-trip time.
Any window > 2 frames can run at full speed, 10 Mb/s

● As above, but with 64B frames

– send time is (64 x 8)/(10 x 106) = 0.0512 ms

– time to send 20 frames = 20 x 0.0512 = 1.024 ms

– first ACK returns after 1.2+2*0.0512 = 1.3024 ms

– effective bit rate is (20 * 64 * 8)/1.3024 = 7.862 Mb/s

– note the effect of using a small frame size !

314, August 2007 12 - Connections 26

Bandwith-Delay Product (BDP)

● BDP for a link = data rate x link delay
● Auckland-Hamilton at 10 Mb/s:

BDP = 10 Mb/s x 0.6 ms = 16.67 kb
= 2083 B

● This is the maximum number of bits we can
have 'on the wire'

● Need to have buffers at least this big so that
transport protocol can keep the link busy

● Bigger frames sizes help to keep the link busy –
less protocol overhead

314, August 2007 12 - Connections 27

Protocol Correctness 8.7
● Shay discusses two ways to describe systems:

– Finite State Machines
– Petri nets

● Finite State Machine models a system as being
in one of a finite set of states

● State Transition Diagrams (STDs) are graphs,
each vertex represents a state, and each edge
a transition between states

● Petri nets are more detailed, we won't discuss
them further

314, August 2007 12 - Connections 28

State Transition Diagrams

● Look for problems on graph

– No edges pointing to S
1

– S
5
– S

6
is an infinite loop

● This kind of analysis helps find flaws

– it doesn't prove correctness!



314, August 2007 12 - Connections 29

Protocol Layers, the OSI Model 1.4

● Layers are an abstraction, they provide a
simple view of what happens in a
communication system

● Layer n
– provides services to layer n+1
– uses services from layer n-1

● Generally we implement systems this way,
but sometimes we may find it useful to peek
between layers, or 'break layer purity'

314, August 2007 12 - Connections 30

OSI Model

● OSI has 7 layers, TCP/IP collapses 5-7 into 5

7

6

5

4

3

2

1

314, August 2007 12 - Connections 31

Introduction to LANs 9.1

● LANs connect many hosts (devices) together
● Link medium may be copper (coax or UTP),
fibre or wireless

● Topologymay be
– bus: hosts share the medium by taking turns
– ring: access is controlled by pasing a token

● Ethernet – today's most common LAN physical
layer – uses a bus topology

● Point-to-point link is a LAN with only two hosts

314, August 2007 12 - Connections 32

LAN Layers
● Layer 1 is the Physical layer. On this layer,
you've already looked at signaling and
modulation methods

● Layer 2, the Link layer, is where hosts talk to
each other. Protocols here send frames
(packets) to other hosts, and receive frames in
response

● Layer 3, the Network layer, is used to pass
packets between LANs. For example, we often
use IP to pass frames between Ethernet-
connected hosts



314, August 2007 12 - Connections 33

Data Link Control 9.2
● Link layer is divided in two – LLC and MAC
● Shay presents
HDLC, a fore-
runner of
IEEE 802.2

● These are
bit-oriented
protocols

314, August 2007 12 - Connections 34

HDLC Frame Format

● Flag pattern, 01111110(six 1s) marks start and
end of frame. Receiver watches medium for
flags

● How do we send the flag pattern within the data
part of the frame?

314, August 2007 12 - Connections 35

HDLC Bit Stuffing

314, August 2007 12 - Connections 36

HDLC communication example



314, August 2007 12 - Connections 37

802.2 Header Formats

● DSAP,SSAP are Service Access Point addresses

– 04 = IBM SNA, 06 = IP,
AA = SNAP (Subnetwork Attachment Point)

● OUI = Organisation Unique Identifier

● Type field values are Ethernet type (Ethertype) values

– 0800 = IP, 0806 = ARP, 6003 = DECnet phase IV, ...

DSAP address SSAP address Control field Information field
8 bits 8 bits 8 or 16 bits N*8 bits

AA AA 03 00 00 00 08 00
LLC 3 octet OUI 2-octet type field

314, August 2007 12 - Connections 38

Contention Protocols 4.7
● Basic idea: Hosts must share the medium

● Aloha System, 1970s, using packet radio:

314, August 2007 12 - Connections 39

Aloha Protocol
● Any host can broadcast a message to
Menehune at any time

● If the message is received correctly, Menehune
ACKs it (on a different frequency)

● If two host transmissions overlap (and interfere)
the message is lost

● If a message is not ACKed the host assumes it
was lost, waits a random time, then resends

● Worked and was simple, but not a very efficient
use of the medium

314, August 2007 12 - Connections 40

Carrier Sense Multiple Access (CSMA)

● Like Aloha, listen to medium for any activity
● If no activity, transmit; otherwise wait
● Can still get collisions, various ways to reduce
them:
– use 'slot time,' hosts can only transmit at start of a
slot

– random choice, probability p, to decide whether to
transmit or wait for next slot

– Fig. 4.44 compare various schemes



314, August 2007 12 - Connections 41

Collision Detection
● Start transmitting any time, but watch medium for a collision

● When collision detected, stop tranmitting, send jam signal

● This is CSMA/CD


