
1

CS314s2-29
Basic Internet Applications

● An application is anything useful that runs over a
transport protocol, or even over raw IP.

● We've already seen some: DNS and DHCP for
example. Routing protocols also run over UDP or TCP.

● Other basic apps include
– Telnet and SSH
– FTP
– SMTP
– SNMP

2

Types of application
● The Internet is intrinsically a peer-to-peer network

– peer = "one that is of equal standing with another"
– anybody can send packets to anybody

● Applications are often classified as client/server or
peer-to-peer (p2p)
– client/server: a client program starts by asking the server to

respond; client and server have different roles.
– p2p: each system starts by discovering the others. Systems

may act as clients and servers for each other.
– Even a p2p application probably needs some designated

servers (e.g. Skype login server).
– Some applications are hard to classify (think about this when

we discuss SMTP).

3

Telnet
● Insecure line-mode interaction over the network

(remote login)
– sends what you type, over TCP
– returns what the other end responds with
– more or less transparent transmission of ASCII

characters
– login password travels in the clear, hence highly

discouraged unless you want your password made
public

– Telnet server listens on TCP port 23
10

4

Secure Shell (a.k.a. SSH)
● Secure line-mode interaction

– Can also be used for secure file transfer.
– SSH server listens on TCP port 22

10

– Remote user is authenticated using public key
cryptography.

– Server and client software establish an encrypted
channel.

– Interaction (or file transfer) uses that channel.

5

SSH architecture
● Three main components:

– SSH Transport Layer Protocol
● Runs over TCP.
● Provides server authentication, data confidentiality

(encryption), and data integrity.
– User Authentication

● Runs over SSH Transport Layer.
● Authenticates the client-side user to the server.

– Connection Protocol
● Runs over an encrypted, authenticated SSH transport

connection.
● Multiplexes the connection into several logical channels.

6

Notional message structure

● BlueBlue - unprotected
● YellowYellow - authenticated and encrypted
● MagentaMagenta - message authentication code
● Notional view, because

– SSH messages may be streamed across multiple TCP segments.
– Payloads for several channels may come in sequence.
– SSH headers are rather simple (and there is no auth. header)

TCP header SSH transport header

client auth. header
(implied - no bits) SSH channel header Payload data Pad

IP header

...

...

MAC

7

SSH messages
● All start with a code byte, e.g. a channel header + data

is simply:
 byte SSH_MSG_CHANNEL_DATA
 uint32 recipient channel
 string data

 where string is a uint32 containing the number of data
bytes, followed by the data.

 (SSH_MSG_CHANNEL_DATA has value 94
10

. Many SSH message
types are defined, each with a name and a corresponding
numeric value.)

8

Transport establishment
● Two or three round trips, exchanging SSH messages

of various types
● Version number exchange

– version needs to be 2.0 today.
● Key exchange

– negotiate use of strongest mutually acceptable encryption
algorithm

– negotiate choice of Message Authentication Code (MAC)
algorithm

– server authenticates itself via shared secret or certificate
● Compression negotiation

– built into key exchange dialogue
– optional

9

User authentication
● Transport negotiation creates a safe connection

– Server is authenticated but client is unknown.
– Next step is to authenticate the client (user).

● Client sends SSH messages like
 byte SSH_MSG_USERAUTH_REQUEST
 string user name in ISO-10646 UTF-8 encoding
 string service name in US-ASCII
 string method name in US-ASCII
 method specific fields

● After iteration to find a method that the server accepts,
server will finally reply
 byte SSH_MSG_USERAUTH_SUCCESS

● The user is now authenticated on the safe connection.
– Hence, no authentication headers needed in following messages. 10

SSH cryptography and authentication
● SSH can support many encryption algorithms

– Must include 3DES-CBC
– Should support AES128-CBC

● SSH can support many message integrity (MAC)
algorithms
– Must include HMAC-SHA1

● Client authentication methods include
– Public key (client uses private key to sign auth'n request)
– Password (client sends text password, within SSH encryption)

11

SSH Channel establishment
● Transport negotiation followed by user authentication

creates a fully trustworthy connection.
– Final step before sending data is to open individual channels over

that connection
– The most common case is a remote login (shell) channel
– Other options include X11, TCP/IP port forwarding, and secure

FTP.
● Opening a channel needs an SSH message such as
 byte SSH_MSG_CHANNEL_OPEN
 string "session"
 uint32 sender channel
 uint32 initial window size
 uint32 maximum packet size
– SSH channels run a simple window mechanism to avoid buffer

overflows (but rely on TCP for flow control & retransmission). 12

FTP: File Transfer Protocol
● Same generation as Telnet, i.e. insecure (passwords

in the clear, no crypto, etc.)
● FTP client (user) and server exchange control

messages and data over separate TCP connections.
– Commands and replies are sent in ASCII text using Telnet format.
– FTP server listens on TCP ports 21 (control) and 20 (data).

● FTP user can request file transfer between two other
systems.

User

Server BServer A

Data flow

Control flows

13

Important FTP commands
● USER - username for login
● PASS - password for login (unprotected)
● CWD - cd
● QUIT
● PORT - change host address and port number for incoming

data from its default value
● PASV (“passive”) - tell server to wait for data connection

(instead of initiating it)
– PORT and PASV can combine to start “triangle” transfer

● TYPE - Binary, ASCII, etc. (ASCII is 7-bit characters!)
● RETR pathname (“retrieve”) - open and send a file
● STORE pathname - receive and store a file 14

Secure File Transfer
● Standard FTP is unprotected
● SCP is an old solution (remote copy over SSH)
● SFTP is sometimes

– Simple File Transfer Protocol (obsolete, insecure)
– SSH File Transfer Protocol (available with SSH, but

not formally standardised, and not FTP over SSH)
● There is of course a way of securing FTP with

TLS (RFC 4217)

15

SMTP: Simple Mail Transfer Protocol
● Simple? Not really.

– 76 pages in the RFC, plus another 51 pages for mail message
format.

● Another TCP application (port 25).
● Used for one mail server to forward mails to another,

and for user agents to submit mail to their own server.
– Not used for mail delivery to user agents

● SMTP transports a mail object.
– A mail object contains an envelope and content.
– The content is what you can see with 'view message source' in

most mail agents
– The envelope is formed by a series of SMTP commands

expressed in 7-bit ASCII 16

Mail overview
User Agent 2

User Agent 3

User Agent 1

Mail Server B

User Agent 4

Mail Server C

Mail Server A

SMTP

POP3 POP3
SMTP IMAP

MX (mail exchange)
records in the DNS tell
mail servers where to
send mail for
*@example.com

SMTP is a
client/server protocol
used between peers.

17

SMTP commands (simplified)
● EHLO - opening command from client side

– SMTP servers take client role when sending
– HELO - obsolete version of EHLO

● MAIL FROM: <reverse-path>
– <reverse-path> is the source mail address, to be used for

returning errors - not for normal replies
● RCPT TO: <user@example.com>

– destination mail address
– multiple recipients = multiple RCPT commands

● DATA
– Start of message body
– Originally 7 bit ASCII based; now “8 bit clear” is negotiable
– End of body is <CRLF>.<CRLF> 18

SNMP
Simple network management protocol

● Large networks don't run themselves - they need
constant monitoring, and frequent configuration
updates.

● SNMP is one way this can be achieved from a central
point.

● SNMP features:
– Real time status monitoring
– Alerts when something goes wrong
– SET commands for configuration

(However, routers etc. are usually configured using
a command line interface, typically over SSH)

19

SNMP model

SNMP manager

Managed system
(e.g. router)

SNMP agent

User interface

Operator

Management
database

Shared information model
“MIB” =

Management Information dataBase

20

MIBs and SMI
● A MIB module describes in machine-readable form the

information model for managing a particular device or
protocol.
– MIBs are written in a format called SMI (Structure of

Management Information) using ASN.1 syntax.
– ASN.1 (Abstract Syntax Notation 1) was part of OSI
– A MIB module must be syntactically correct, just like a

program, so that manager and agent can parse it.
– Manager and agent must use exactly the same MIB
– The agent contains code to map MIB objects to and from

real-world objects.
– The semantics of MIB objects is often expressed as a

comment; that's where code has to be written.

21

Sample extract from the MIB for IP
IP-MIB DEFINITIONS ::= BEGIN
IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 Integer32, Counter32, IpAddress,
 mib-2, Unsigned32, Counter64,
 zeroDotZero FROM SNMPv2-SMI
...
ipSystemStatsInAddrErrors OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of input IP datagrams
discarded because the IP address in their IP
header's destination field was not a valid address
to be received at this entity."

::= { ipSystemStatsEntry 9 }

Background slide

22

SNMP messages
● Normally runs over UDP

– short messages
– must do no harm if lost or repeated, e.g. set value=4 is OK,

increment value is unsafe.
● Message types (simplified)

– GET
– GET-NEXT (ask for object value(s)
– GET-BULK
– RESPONSE (reply to a GET)
– SET (set an object value)
– TRAP (alert message from agent)

● Messages include object names and data values as
appropriate (according to MIB syntax, mapped in a
defined way into binary).

23

Managed system
(e.g. router)

 SNMP message flow

SNMP manager

SNMP agent

User interface

Operator

Management
database

Shared information model
“MIB” =

Management Information dataBase

GET
GET-NEXT
GET-BULK
SET

RESPONSE
TRAP

24

References
● Shay 11.5
● SSH - RFC 4251, 4252, 4253, 4254, 4256,

4250
● FTP - RFC 959 (and updates)
● SMTP - RFC 2821

– RFC 2822 for message formats
● SNMP - RFC 3410 (SNMPv3 intro), RFC 3416

(protocol)
– RFC 2578 (SMIv2)

