
1

CS314s2-28
UDP: User Datagram Protocol,

Other Transports, Sockets
● IP is an unreliable datagram protocol

– congestion or transmission errors cause lost packets.
– multiple routes may lead to out-of-order delivery.

● UDP delivers exactly this service to user programs
● If senders

– send too fast, routers or receivers cannot keep up (making
congestion worse);

– compete, capacity must be fairly shared.
● UDP cannot solve these problems in any way.

2

UDP header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Port | Destination Port |
+-+
| Length | Checksum |
+-+
| data ...
+-+

● Protocol Number or Next Header is 17 (decimal).

3

UDP header fields
● Port numbers - used to find TCBs at each end

– Note that source port is optional. Since there is no concept of a
connection in UDP, it may not be needed

● Length
– length in bytes of UDP header plus data
– ill-advised to exceed the available MTU

● Checksum
– 16-bit one's complement of the one's complement sum of a

pseudo header of information from the IP header, the UDP
header, and the data, padded with zero bytes at the end (if
necessary) to make a multiple of two bytes.

– Pseudo-header is the same as for TCP. 4

A day in the life of a UDP packet
– User A: Listen (portA)
– User B: Send (AddressA, portA, DataB)
– User A: Receive (DataB)
– User A: Listen (portA)

● That's if the packet gets through the network. If it
happens to be discarded due to congestion or error,
we get:
– User A: Listen (portA)
– User B: Send (AddressA, portA, DataB)
 ... and the rest is silence.

5

Why is UDP useful?
● Because UDP offers no error recovery and no error

notification, it may appear useless.
● In fact, on a network less than 100% busy, UDP

packets usually get delivered. But a UDP-based
application must include its own timeouts and error
recovery. Mostly, it's easier to use TCP instead.

● Important UDP applications include
– DHCP
– DNS
– RIP
– SNMP (simple network management protocol)

 which can all survive lost packets. Each listens on a
well-known port number. 6

References for UDP
● A few words in Shay 11.4
● Any of the TCP/IP books listed for IPv4
● RFCs:

– RFC 768, the original definition
– RFC 2460 (IPv6) modifies checksum formula.

7

Other transport protocols
● RTP - Real time Transmission Protocol
● SCTP - Stream Control Transmission Protocol
● DCCP - datagram congestion control protocol
● And related: ECN - Explicit Congestion

Notification.

8

RTP - mainly for audio/video streams
● RTP data packets run over UDP on an even-

numbered port.
– normally a port number above 16384
– RTSP (RT Streaming Protocol) is layered on top of RTP

● RTCP (RTP Control Protocol) runs over UDP on the
next-higher (odd-numbered) port.

● RTP provides
– Payload-type identification
– Sequence numbering
– Time stamping for synchronisation and jitter management
– Delivery monitoring

● But with the unreliability issues of UDP
– Video or audio codecs must allow for this

9

SCTP
● A reliable, congestion-friendly protocol that has

learned much from TCP.
● Main differences:

– Both ends can have multiple IP addresses, and the SCTP
connection can switch between addresses (for example, in case
of a routing failure for one of the addresses).

– SCTP supports multi-streaming, i.e. separate virtual connections
within the main SCTP connection

● Intended use was reliable connectivity for telephony
signalling over the Internet.
– But SCTP is quite general in applicability.
– Quite new and not widely used yet.

Background slide

10

DCCP
● DCCP behaves like a halfway house between UDP

and TCP.
– TCP's reliability and in-order delivery features introduce delays

that are not OK for audio/video.
– UDP's lack of congestion management causes network saturation

 when demand exceeds capacity.
– DCCP establishes a connection (like TCP) and reports packet

delivery (unlike UDP). It does not retransmit on error or attempt in-
order delivery (like UDP and unlike TCP).

– DCCP offers two congestion management approaches
– Also makes use of ECN (next topic)
– Quite new and not widely used yet.

Background slide

11

ECN
● Makes use of bits 6 and 7 in the IPv6 Traffic Class

field or the IPv4 Differentiated Services field.
– 00 - ECN not in use
– 01 - unused
– 10 - ECT flag
– 11 - CE flag

● ECT means “sender is ECN-capable”
● CE means “router is congested” and is interpreted by

the receiving transport protocol.
● A transport protocol that supports ECN will invoke a

“slow down” mechanism when it receives a CE flag.
– Quite new and not widely used yet.

Background slide

12

Other Transport References
● RTP - Shay 11.4, RFC 3550
● RTSP - RFC 2326
● SCTP - RFC 4960
● DCCP - RFC 4340, 4341, 4342
● ECN - RFC 3168

13

Sockets
● All transport protocols need a mechanism for upper

layer software to access the transport.
● The general concept is a notional “socket” that the

application plugs into, embodied as a Socket API.
– Originated as “Berkeley sockets” on 4.2BSD Unix
– Standard API is defined as part of Posix standard

● API includes calls to resolve DNS names into IP
addresses, open and close sockets, and send and
receive data.
– Plus many socket options for various purposes.

14

Socket API overview
(not a programmer's guide)

● socket is a function that creates a new socket
data structure and returns a handle for it.

mySocket = socket(domain,type,proto)
domain is AF_INET for IPv4, AF_INET6 for IPv6
type is SOCK_STREAM for TCP, SOCK_DGRAM for UDP
proto is IPPROTO_IP as a default

● close(mySocket) gets rid of a socket.

15

Finding addresses (1)

● gethostbyname() is a function that takes a DNS
name as a string and returns a structure containing the
corresponding IP address

● In other words, it invokes the DNS resolver and the
whole DNS lookup process.

● Works well in an IPv4 network with one IP address per
DNS name.

● Inadequate for an IPv6/IPv6 network with multiple
addresses per name.

16

Finding addresses (2)
● getaddrinfo() overcomes the shortcomings of
gethostbyname() for IPv4/IPv6 coexistence.

● Allows user to express IPv6 preference.
● Note that it doesn't return “the” address. The code that

calls getaddrinfo is supposed to choose from a set
of addresses.
– by default, assume addresses are ordered by system preference
– if the first address doesn't answer, try the next one...

● The user code is more complex than with
gethostbyname, but results in more robust application
behaviour when there is any kind of network problem.

17

Finding addresses (3)

● An AF_INET6 socket can be used for IPv6 or
IPv4.
– if a “mapped” address like ::FFFF:10.1.2.3 is used,

the socket will automatically use IPv4
● Shay 11.3 is wrong to suggest that routers recognise

these addresses - it is the sending host that decides to
use IPv4 when mapped addresses are used with a
socket.

● The socket option IPV6_V6ONLY will force a
socket to work only in IPv6 mode.

18

Getting ready to talk

● bind() assigns an address to a socket.
● listen() asks a socket to listen for incoming

connections (TCP) or datagrams (UDP).
● connect() launches a connection (TCP

SYN/ACK), or connects a program to a local
socket (UDP).
– shutdown() disconnects (TCP FIN/ACK).

● accept()accepts an incoming connection
request (TCP).

19

Talking
● send() and recv()calls.

– and variants, or use write() and read().

● Streaming mode for TCP - no relationship
between individual send/recv calls and
individual TCP segments.
– Hence the PUSH option in TCP, to force data into the

receiver.

● Datagram mode for UDP - one send/recv for
each datagram, and lost datagrams are truly
lost.
– checksum errors give error returns from recv() 20

Securing the socket layer:
Transport Layer Security (TLS)

● Protects TCP sessions
– Earlier versions known as SSL

● Uses a handshake procedure to negotiate crypto
algorithm

● Uses server's public key to securely negotiate keys
for the session
– server presents a certificate to the client, including its public

key. The certificate is cryptographically signed by a trusted
certificate authority using its public key.

● Following these negotiations, no 3rd party can intercept
or inject traffic

21

Socket References
● Shay 12.2 (TLS is in 7.5)
● See your favourite Unix book or

http://www.rt.com/man/
● With IPv6: RFC 3493 (and 3542)
● The Wikipedia article on Berkeley sockets is

pretty good (but doesn't use getaddrinfo).
● POSIX standard: IEEE Std. 1003.1-2004

Standard for Information Technology -- Portable
Operating System Interface (POSIX).

See http://www.unix.org/version3/ieee_std.html

