
#### CS314s2- 26 IPv6: Internet Protocol version 6

- Why?
- Addressing
- Packet format
- Fragmentation
- Coexistence

- Control messages (ICMPv6)
- Getting an address (DHCPv6, Autoconfig.)
- Finding neighbours (ND)
- Naming things (DNS)

3

#### Why we need IPv6



Obviously, having fewer addresses than people is silly

# IPv6 in a nutshell

- New version of IP with bigger addresses
- Designed starting in 1994
  - operational experimentally in 1997
- Major deployments starting now
  - US Federal Government requirement in 2008
- Connectionless datagram approach doesn't change.
- Will co-exist with IPv4 for many years.

# IPv6 Address Format

- In the abstract, it's just a 128 bit binary number
- Conventionally written in "colon-separated hexadecimal": 2610:00a0:c779:000b:0000:0000:d1ad:35b4 abbreviated as 2610:a0:c779:b::d1ad:35b4
- Obviously, the routing system has to treat it separately from IPv4

2

#### Location versus Identity

| interface ID<br>order bits indicate><br>tity on the LAN<br>64 bits |
|--------------------------------------------------------------------|
| order bits indicate><br>tity on the LAN<br>64 bits                 |
| 64 bits                                                            |
|                                                                    |
| interface ID                                                       |
| ite<br>64 bits                                                     |
| interface ID                                                       |
| i                                                                  |

# Special types of IPv6 address (2)

- ::/128 (all zeros) means "unspecified"
- ::1/128 is the loopback address (send a packet to yourself)
- FE80::/10 (1111111010xxx...) is "link local" space for isolated networks

# Special types of IPv6 address (1)

• IPv6 also supports *multicast* addressing and routing.

- Multicast IPv6 addresses are under prefix FF00::/8

- There is no broadcast address in IPv6.
- anycast is a special use of unicast, as in IPv4.

#### Special types of IPv6 address (3)

 ULAs (Unique Local Addresses) are reserved for private use within a site, under prefix FD00::/7

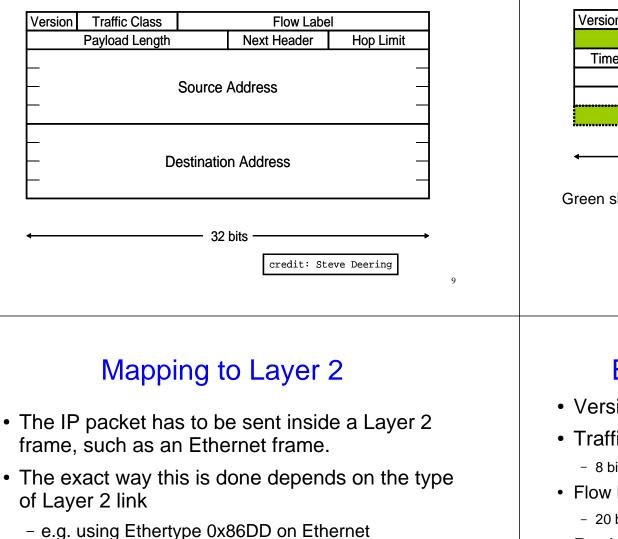
| •        | 40 bits   |           | 64 bits      | l |
|----------|-----------|-----------|--------------|---|
| 11111101 | Global ID | Subnet ID | Interface ID | İ |

- Globally ID is a unique pseudo-random value.
- ULAs are therefore unique, unlike IPv4 private addresses; can be safely routed locally.
- IPv4 addresses mapped in IPv6 format:

| 1    | bits | 16       |            |
|------|------|----------|------------|
| 0000 |      | FFFF  II | v4 address |

 Not used on the network; used within IPv6+IPv4 hosts to exchange packets from IPv4 clients with applications

# IPv6 Header Format


IP packet

Layer 3

Link Layer

Layer 2

Header



Link Layer

Trailer (if any)

Layer 2

#### Back to the IPv4 header

10

|    | Version Hdr Len Prec TOS                                                                                                                                                                                                     | Total Length          |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
|    | Identification                                                                                                                                                                                                               | Flags Fragment Offset |  |  |  |
|    | Time to Live Protocol                                                                                                                                                                                                        | Header Checksum       |  |  |  |
|    | Source                                                                                                                                                                                                                       | Address               |  |  |  |
|    | Destinatio                                                                                                                                                                                                                   | on Address            |  |  |  |
|    | Options                                                                                                                                                                                                                      | Padding               |  |  |  |
|    |                                                                                                                                                                                                                              |                       |  |  |  |
|    | → 32                                                                                                                                                                                                                         | bits                  |  |  |  |
|    | Croop abadad parts have been                                                                                                                                                                                                 | dropped from IDVG     |  |  |  |
|    | Green shaded parts have been                                                                                                                                                                                                 | aropped from 1996.    |  |  |  |
|    |                                                                                                                                                                                                                              |                       |  |  |  |
|    |                                                                                                                                                                                                                              | credit: Steve Deering |  |  |  |
| 9  |                                                                                                                                                                                                                              |                       |  |  |  |
|    |                                                                                                                                                                                                                              |                       |  |  |  |
|    | Explanation c                                                                                                                                                                                                                | of IPv6 header        |  |  |  |
|    | Version: 6                                                                                                                                                                                                                   |                       |  |  |  |
|    |                                                                                                                                                                                                                              |                       |  |  |  |
|    | <ul> <li>Traffic Class Field, identical to DS Field in IPv4</li> </ul>                                                                                                                                                       |                       |  |  |  |
| ~~ | <ul> <li>8 bits used to manage quality of service</li> </ul>                                                                                                                                                                 |                       |  |  |  |
| be | <ul> <li>Traffic Class Field, Identical to DS Field in IPV4         <ul> <li>8 bits used to manage quality of service</li> <li>Flow Label</li> <li>20 bits intended for flow-based quality of Service</li> </ul> </li> </ul> |                       |  |  |  |
|    | 20 hits intended for flow based quality of Service                                                                                                                                                                           |                       |  |  |  |
|    |                                                                                                                                                                                                                              |                       |  |  |  |
|    | <ul> <li>Payload length</li> </ul>                                                                                                                                                                                           |                       |  |  |  |
|    | <ul> <li>not including header</li> </ul>                                                                                                                                                                                     |                       |  |  |  |
|    | Next Header                                                                                                                                                                                                                  |                       |  |  |  |
|    | <ul> <li>explained below</li> </ul>                                                                                                                                                                                          |                       |  |  |  |
|    | Hop Limit                                                                                                                                                                                                                    |                       |  |  |  |
| 11 | – Same as IPv4 TTL.                                                                                                                                                                                                          |                       |  |  |  |

#### **Next Header value**

- An IPv6 packet can start with a string of headers.
  - If there's only the basic header described so far, "Next Header" contains a protocol number just like IPv4, saying that the payload is TCP, UDP, etc.
- Various optional additional headers are defined.
  - Hop-by-hop options header
  - Destination options header
  - Routing headers (several types)
  - Fragment header
  - and others
- Each one includes a new "Next Header" value
  - The last one is always the payload protocol

13

## Fragmentation

- IPv6 requires that every link in the Internet has an MTU of 1280 bytes or greater.
  - Any link incapable of this must fragment at link level.
- IPv6 fragmentation is <u>only</u> done by the sending host, never by routers.
  - Sender must determine path MTU size.
- Fragmentation header details based on IPv4 experience

| +-+-+-+-+-+-+-+-+ | -+-+-+-+-+-+-+-+- | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | +-+-+-+ |
|-------------------|-------------------|------------------------------------------|---------|
| Next Header       | Reserved          | Fragment Offset                          | Res  M  |
| +-+-+-+-+-+-+-+-+ | +-+-+-+-+-+-+-+-  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | +-+-+-+ |
|                   | Identifi          | cation                                   | 1       |
| +-+-+-+-+-+-+-+-+ | -+-+-+-+-+-+-+-+- | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | +-+-+-+ |
| M 1 for mor       | o frogmonto MO f  | or loot frogmont                         |         |

- M=1 for more fragments, M=0 for last fragment
- Res=Reserved

# IPv6 Packets with headers

| IPv6 header          | TCP header + data |  |
|----------------------|-------------------|--|
| next header =<br>TCP |                   |  |

| IPv6 header              | Routing header       | TCP header + data |
|--------------------------|----------------------|-------------------|
| next header =<br>Routing | next header =<br>TCP |                   |

| IPv6 header   | Routing header | Fragment header |               |
|---------------|----------------|-----------------|---------------|
| next header = | next header =  | next header =   | header + data |
| Routing       | Fragment       | TCP             |               |

credit: Steve Deering

#### 14

# ICMPv6 and DHCPv6

- We'll skip the details
- They are both similar too but different in detail from the IPv4 versions.

#### Routing for IPv6

- RIP, OSPF, BGP4 come in IPv6 versions
  - no change in principle
  - known as RIPng, OSPFv6 and BGP4+

#### Getting an address without DHCP: IPv6 Stateless Auto-configuration

- Intended for "dentist's office" scenario (i.e. no manual configuration needed)
- Nodes start by acquiring a Link Local address using the FE80::/10 prefix
- Router issues Router Advertisements to provide a routeable prefix for new nodes
  - unique global address formed from that prefix
- Nodes then use Neighbor Discovery and Duplicate Address Detection procedures to find neighbors
  - ARP experience showed that broadcast is not a good approach (risk of "broadcast storms").
  - Therefore, IPv6 uses local multicast for ND

# Auto-configuration functions

- Router Discovery
- Prefix Discovery
- Parameter Discovery
- Address Autoconfiguration
- Address Resolution
- Next-hop Determination
- Neighbour Unreachability Detection (NUD)
- Duplicate Address Detection (DAD)
- Redirect: router supplies better first-hop.

# Auto-configuration messages

- Router Solicitation\*
- Router Advertisement\*
- Neighbour Solicitation\*
- Neighbour Advertisement\*
- Redirect

All sent as ICMPv6 messages.

\* May be sent to multicast addresses that don't "wake up" everybody, unlike ARP multicast.

#### Forming an address automatically

- Prefix (normally 64 bits)
  - Initially , FE80::/64 (link local)
  - Secondly, prefix received in Router Advertisement
- Interface Identifier (normally 64 bits)
  - Simplest: Ethernet address padded out to 64 bits
     34 56 78 9A BC DE becomes
     3656:78FF:FE9A:BCDE
     (16 bits inserted, and U/L bit inverted)
  - Privacy addresses: choose a pseudo-random value
  - Secure ND: a cryptographically generated value

17

## DNS for IPv6

- A records carry 32 bit IPv4 addresses.
- AAAA records carry 128 bit IPv6 addresses.
- DNS queries for AAAA records can travel over IPv4 or IPv6.
- A modern resolver returns both A and AAAA records.

# IPv4 and IPv6 coexistence

- The old and new versions will have to live together and work together for many years.
- IPv6 can be carried over IPv4 in "tunnels"
  - IPv6 packets encapsulated in IPv4 packets
- Servers and ISPs will become "dual stack", able to support IPv4 and IPv6 clients simultaneously.
- Application proxies will be able to map IPv4 clients to IPv6 servers, or the opposite.
- Direct translation of v4 to v6 at packet level doesn't work well.

Coexistence Legacy IPv4-only mechanisms client or server (simple version) **Dual Host** Dual Host IPv4 Middleware Middleware network IPv6 IPv4 IPv6 IPv4 tunne stack stack stack stack end-point proxy end-poin IPv4/IPv6 translator IPv6 network A tunnel means IPv6 packets wrapped inside IPv4 packets. New IPv6-only 23 client or server

#### References

- Shay 11.3
  - bugs:
    - "priority" and "flow label" out of date on page 562
    - ignore the "registry" bits in Fig.11.20 and page 568.
    - IPv4-compatible format (Fig. 11.22(b)) is obsolete and the whole discussion of that figure is confused.
- IPv6 Essentials by Silvia Hagen
- Lots of RFCs:

2460 (protocol), 4861+4862 (autoconfig), 4291 (addressing), 4294 (node requirements - lists many important RFCs), etc. etc.

21