COMPSCI 314 S1 C	
Data Communications Fundamentals	

COMPSCI 314 S1C 2006 Data Communications Fundamentals

Lecturers • Nevil Brownlee – Room 590, n.brownlee@auckland.ac.nz • Clark Thomborson - Room 593, ctho065@ec.auckland.ac.nz • Peter Fenwick. p.fenwick@auckland.ac.nz Tutor dlee064@ec.auckland.ac.nz • DongJin Lee – Room 596, Test Date • Monday 8 May, 6.25 – 7:30 pm Assignments due (via the CS DropBox, dates subject to revision) Wednesday 15 March, Wednesday 5 April,

Wednesday

1 Mar 06

24 May

Other matters

 Class representative 	•	
Assignment extension	ons	
We will consider extension 1. Illness or other unf 2. Conflicts with othe week of the assign	ons to the assignment due date or foreseeable emergency r assignments, but only if the req iment being distributed	nly for — uest is made within <i>one</i>
We will not be sympathet have 3 other assignmen dates have been publis better or arranged earli	tic if told "The 314 assignment is nts also due then; can I please ha hed weeks ahead; you should ha ier for an extension	s due tomorrow and I we an extension?" The ve planned your work
• Questions		
Your first contact for que Also, you could ask on th	estions should be the <i>tutor</i> , not the class forum	e lecturer.
•Email		
Email must include the co	ourse number (314) and your UP	Ι
314 S1C: Data Communications Intro	1 Mar 06	Page 3 of 43

Approach to material

Wednesday 3 May,

314 S1C: Data Communications Intro

- This year we are following the textbook
- The lectures will provide in-depth discussion and comment on the course material. You should read the relevant sections in the textbook!
- The course does *not* cover *all* of the textbook. The sections that are covered are shown on the course outline, as it appears on the *course web page*
- Tutorials are scheduled (in lecture slots 24 and 35) before the terms test and the exam

1 Mar 06

• *Changes* to the course outline and/or content will be notified on the course web page

314 S1C: Data Communications Intro

Page 4 of 43

1

Page 2 of 43

Week starting	Monday	Wednesday	Friday	
27 Feb 2006	1 Introduction	2 Basics	3 Protocols	
6 Mar 2006	4 Protocols	5 Telephone	6 Analog Access	
13 Mar 2006	7 —	8 ISPs, PPP	9 Compression	Ass 1 due 15 Mar
20 Mar 2006	10 Compression	11 Error Detect	12 Error Correct	
27 Mar 2006	13 LANs, E/net	14 Lan I/connect	15 VLANs	
3 Apr 2006	16 —	17 Security	18 Security	Ass 2 due 5 Apr
10 Apr 2006	19 Security	20 Web Security	– Easter –	
17 Apr 2006	_	Mid Semester Break	_	
24 Apr 2006	_	Mid Semester Break	_	
1 May 2006	21 WLANs	22 IP	23 Routing, DV	Ass 3 due 3 May
7 May 2006	24 Tutorial (test)	25 Routing, LS	26 Routing, BGP	TEST: Mon 8 May
15 May 2006	27 IPv6	28 TCP	29 TCP	
22 May 2006	30 UDP, Streaming	31DNS	32 Email, FTP	Ass 4 due 24 May
29 May 2006	33 VoIP	34 Net Mgmt	35 Tutorial (exam)	
5 Jun 2006	No lecti	ures – just lots of time to	study	

CS Network 2002 (omitting student stations)

1.3 Communications basics

- Data is sent from / received by an *interface* on a device (e.g. a PC)
- It may be sent directly, using *baseband* transmission, or it may be mixed with a carrier signal, i.e. sent using *modulated* transmission
- The time taken to transmit one bit ('0' or '1') is called the *bit cell period*. Within each such period, a receiver must decide whether the incoming bit is '1' or '0'

1 Mar 06

Page 14 of 43

Assum	e:			
	User data size $U = 1000$ byte	es = 8000 bits		
	Header/trailer overhead (H+	T) = 30 octets = 240 bits		
	Reply message size $= 30 \text{ oct}$	ets = 240 bits		
	End to end cable length $D =$	1000 metres		
	Signalling data rate $R = 10 N$	Ab/s (10 ⁷ b/s)		
	Signal velocity in cable V =	2×10^8 m/s		
Then				
	End-to-end latency = $5 \ \mu s$			
	Time to send message = $8 \times$	$1030/10^7 = 824 \ \mu s$		
	Time to send reply = $8 \times 60/$	$10^7 = 48.0 \ \mu s$		
	Total time to send 1000 user (send + outward + reply -	bytes + reverse) = 882.0 μs,		
	Effective user data rate = 1.1	34 byte/µs		
Compa	re with naive prediction: 107/	/8 = 1.25 byte/µs (≈ 9.3%	reduction)	

Link utilisation - comments • A longer link, faster signalling rate and smaller packet can give a marked reduction in performance compared with the raw link speed, for ARQ protocols · Extreme precision is seldom needed or even appropriate in these examples. Packet or data sizes vary widely and cable velocities are seldom known to better than $\pm 1\%$ anyway What's important is that you can give a good estimate of the effects of latency, packet overheads, etc • *The Earth's circumference is 40,000 km (original definition of the metre)* • The distance from New Zealand to North America, South America, Japan or Singapore is close to 10,000 km • The delay or 'latency' from New Zealand to almost anywhere except Australia is at least 1/20 second (10,000 / 200,000 = 50 ms)314 S1C: Data Communications Intro Page 42 of 43 1 Mar 06

Things to do in a network

- 1. Transmit bits from one place to another (Physical)
- 2. Assemble bits into bytes and messages, check for reliable transmission (Link)
- 3. Send messages between end-nodes in mesh-type network (Network)
- 4. In a mesh network, handle lost packets, broken links etc (Transport)
- 5. Handle extended connections between endpoints, LANs, etc.
- 6. Resolve differences between data representation in different computers
- 7. Do something useful (User application)

These are the seven layers of the "Open Systems Interconnection" (OSI) communications model.

TCP/IP (Internet) combines layers 5-7, into a single Application layer

1 Mar 06

We discuss only layers 1-4

Page 43 of 43