Contention Protocols and Networks

Contention Protocols CSMA/CD Network Topologies Ethernet

Contention Protocols

- Can be compared to conventional automobile traffic
 - Without any (traffic) rules, there would be countless collisions and chaos
 - Traffic lights can regulate traffic, and ensure a continual flow
- Network traffic follows a similar model

History of Ethernet

- Ethernet is a development of the Aloha radio network in Hawaii from 1970, for communications with remote nodes in difficult terrain
- Aloha protocol was one of the earliest contention protocols
 - Was designed to establish communication among the islands using a packet radio system

Aloha Protocol

- A single central node transmits packets on one radio channel to all remotes whenever necessary
- All remote nodes share a second radio channel on which they transmit back to the central site
- When the remote node has a message, it just sends it.
 - If it overlaps or `collides' with another transmission, both are garbled and neither is acknowledged.
 - Both remotes wait a random time and retry
- Analogous to entering the motorway with your eyes closed, if you crash, wait a bit, get a new car, and try again

Aloha Protocol

- Collisions were detected easily
- When a frame was received an acknowledgement is sent
- Works well if there are not too many transmissions
 - Protocol is inefficient doesn't listen before transmitting

Slotted Aloha

- With higher traffic, we can divide the time for one transmission, into intervals (slots) of T units each
- Each station must begin transmission at the start of a slot.
 - Even if it is ready to transmit in the middle of a slot it must wait until the start of the next one
- Reduces collisions, as they now only occur when both stations are ready at the same slots
- Known as slotted Aloha Protocol

Pure Aloha

Slotted Aloha

CSMA/CD Protocol

- Ethernet is described as a CSMA/CD protocol
 - Carrier Sense Multiple Access, with Collision Detection
 - All stations can hear all transmissions (multi access)
 - Listen to the 'medium' for any activity (carrier sense)
 - If there is no activity, transmit; otherwise wait
- Reduces collisions

- With CSMA a collision can still occur if two, or more stations want to transmit at nearly the same time
- If both detect no activity, deduce it is OK to transmit
- Such collisions are infrequent

nonpersistant CSMA

- If station detects activity, it does not continue to monitor the medium
- Waits one time slot and checks again for activity
- At this point it transmits if idle, otherwise waits another time slot

p-persistent CSMA

- Station continues to monitor an active medium
- When it becomes quiet, station transmits with a probability, p. If p = 1, station always transmits. If p = 0 it always waits.
- Can still get collisions, if p = 1 for two or more stations wanting to transmit
- With more stations, collisions will occur more often

p-persistent CSMA

- Can reduce such frequency collisions by lowering p
 - Assume 0.5-persistent CSMA. Both stations are waiting on an idle medium, so each transmit with a *Pr*(0.5). One of 4 events happen with equal probability
 - Both transmit immediately
 - They both wait
 - The first sends and the second waits
 - The second sends and the first waits
 - There is a 0.5 probability that one will be able to send
 - There is 0.25 probability that neither sends

4/13/2005

- Reduce the time during which collisions occur
- Previous protocols, sent entire frame, and concludes there was a collision if it did not get a response
- During a collision, medium is also unusable to other stations
- Need a method for listening for collisions, and immediately stopping transmissions if a collision is detected

- Both stations stop transmitting when a collision occurs, and send a jamming signal
 - The wasted time spans only part of the slot, and the time required to send a short jamming signal
- Usually used with CSMA, hence CSMA/CD
 - If the medium is busy, station waits per the persistence algorithm
 - If the medium is quiet, the station transmits the frame and continues to listen
 - If it detects a collision, it stops transmitting and sends a short jamming signal
 - After a collision it waits a random amount of time before trying to send again

- The size of frame to send should be a function of the maximum time it takes to detect a collision
 - Need twice the distance to the other station (as the collision noise needs to travel back to the sending station)
 - In the worst case the time to detect is twice the time it takes a signal to travel the longest distance covered by the network
- A problem is then collision detection over long distance, such as satellite networks

- Need to reduce transmission delays
- The number of slot times a station waits needs to be limited
- One technique 'binary exponential backoff' varies this limit
 - If a station's fame collides the first time, wait 0 or 1 time slots and try again
 - After a second collision wait 0, 1, 2, or 3 slots
 - After a third collision wait 0 7 slots
 - After *n* collisions wait $0 2^{n-1}$ slots if $n \le 10$, else if n > 10, wait between $0 2^{10}$ slots
 - After 16 collisions give up (assume there is an error somewhere)

From Aloha to Ethernet

Ethernet makes several changes on Aloha

- Transmission is on a multi-dropped cable (giving multiple access for many stations) – all stations can hear every transmission
- When a station wants to send, it first monitors the cable and waits if any other station is sending (carrier sense)
- When a station does transmit, it monitors the cable (ether) for another station which sends at about the same time (*collision detection*)
- A station which detects collision stops transmission immediately and 'defers' a random time before retrying
- If it collides again, the deferral time is doubled for each collision to reduce the network traffic and ease congestion (*binary exponential back off*)

Original Ethernet – technical detail

- Signals are encoded with *Manchester coding* at 10Mbit/s with voltages of 0 -2V on a 50Ω cable
- The `bit cell' is divided into 2 halves, with a possible data transition in the middle of each cell
 - Transition $-ve \rightarrow +ve = 1$
 - transition $+ve \rightarrow -ve = 0$

 Data transitions are optionally provided at cell boundaries as needed

Network Topologies

Traditional Ethernet used a bus topology

Token Ring Topologies

- Were popular during the 80's
- All stations are arranged in a ring
 - Each station is only connected to two of its neighbors
 - To send a message, it must pass through all of the stations in-between (clockwise, or anti-clockwise)
- Had better performance to early Ethernet implementations
- Supports speeds of 4Mbps, 16Mbps, 100Mbps, 1Gbps
- Declined in use, after the introduction of switched Ethernet

Token Networks

- Passes a token or right to transmit around the network in an orderly fashion. Only the station with the token can actually send data. Others must wait until they receive the token
- There are two approaches
 - A token ring has all the stations or nodes in a physical ring, so that each node is connected to only two neighbors. All communication requires intervening nodes to relay or forward traffic
 - A token bus physically resembles an Ethernet. Nodes form a logical ring based on their physical addresses. Most receive the token from the immediately higher address and send it to the immediately lower

Token Ring (IEEE 802.5)

 There are two physical configurations, the obvious physical ring, and a star with a central hub, which makes for easier control and maintenance

- One node becomes the active monitor, which apart from its normal communication, checks that the ring is operating correctly and supplies the bit-clock for the ring. All other nodes are standby monitors
- As each node receives from only its up-stream neighbor there is no need for a preamble to synchronize clocks (as with Ethernet

4/13/2005

314 Lecture – Contention Protocols and Networks

Star Topology

- Has one central hub, or computer, to which all others connect
- Easy to implement and extend, even in large networks
- Well suited for temporary networks (quick setup)
- Performance degrades as additional computers added
- Failure of central node can disable entire network
- Limited cable length and number of stations

Bus Topology

- Has a single communication line, typically a twisted pair, coaxial cable or optical fiber (medium is known as a segment)
- Is simple and is easy to add or remove nodes
- Only one station can send at a time, and under heavy traffic bottlenecks may occur

- Has a bus topology
- Uses a form of CSMA/CD contention protocol
- Concepts have been proposed as a standard
 - IEEE standard 802.3
- There a several variations on cable specifications depending on maximum number of stations that can connect and data rates

Cable Types for IEEE 802.3

10Base5 Ethernet

- 50 ohm, 10mm coaxial cable
- Maximum length of 500m
- Known as 'thick wire'
- Relatively expensive and large diameter does not allow it to bend much
- 10Base2 Ethernet (thin wire)
 - 50 ohm, 5mm cable
 - Maximum length 200m
 - More flexible
 - Thinner wire allows it be connected directly to a computer using a T-connector
 - Thinner cable has more electronic resistance and cannot span as far

Note: In the notation XBaseY, X refers to the data rate, not cable width

4/13/2005

314 Lecture – Contention Protocols and Networks

10Base-T Ethernet (twisted pair)

- All stations are connected to a central hub
- Essentially a star topology
 - But behaves like a bus topology
 - A station transmits to the hub, which regenerates the signal and broadcasts it to all other stations, until it reaches its destination
 - Known as 'shared Ethernet'
- Collisions occur when the hub receives two transitions simultaneously
 - Then it broadcasts a special signal alerting the stations that a collision has occurred

4/13/2005

10Base-T Ethernet (twisted pair)

Configuration useful in office buildings

Allows networks to be implemented using fixed wiring

100Base-T Ethernet ('fast Ethernet')

10Base-T is only 10Mbps

- In 1995 IEEE added 100BaseT to the 802.3 protocols
 - Similar to 10BaseT but uses higher quality cables
 - Uses a central hub
 - Uses twisted pair cable
 - Supports 100Mbps

Gigabit Ethernet (1000Base-x Ethernet)

Uses 4x twisted pair cable

- 1000Base-T
 - Maximum length is 100m
- 1000Base-F
 - Offers the noise immunity of optical fiber
 - Maximum length is 2000m
- Identical protocols to 10Base-x
 Ethernets
- Can send a burst of packets, up to 8192 bytes

Recommended Reading

- Understanding Data Communications and Networks
 - Section 3.5 Contention Protocols
 - Sections 6.1, 6.2 LANs