
314 Lecture – Error Correction

Error Correction and Detection - Outline

Introduction

Types of Error Detection and
Correction

Hamming Codes

Basic Checksums

314 Lecture – Error Correction

Introduction

Michelle Lorenz

Michelle@Lorenz.co.nz

Course Coverage:

Error Detection

Error Correction

Data Compression

Ethernet Protocols

314 Lecture – Error Correction

Error Detection and Control

Data transmission is traditionally
error prone, but computers really
prefer data to be completely error-
free

There are two ways of handling
transmission errors

Error detection and correction

Error detection and retransmission

314 Lecture – Error Correction

Error Correction

Often called Forward Error Control (FEC)

Includes extra, redundant information so
that lost data can be reconstructed

FEC is expensive, especially to handle
burst errors rather than occasional bit
errors

FEC must be used where original data is
not available, such as deep-space
telemetry and data recording

314 Lecture – Error Correction

Error Detection and Retry

Also known as Automatic Repeat Request
(ARQ)

Relies on error detection and
retransmission of faulty messages

The usual method in data
communications

Very good error detection and much
simpler than moderate error correction

Uses ‘checksums’ to only detect errors,
not correct them

314 Lecture – Error Correction

FEC and ARQ ctd

For both FEC and ARQ, we calculate
a checksum at the sender and
transmit this with the data

At the receiver the checksum is
recomputed and checked for
agreement with what is transmitted

314 Lecture – Error Correction

FEC

Hamming Codes are an example of
FEC

Hamming Codes insert parity bits
into the message

Parity is the extra bit which is added
to the information bits and adjusted
so that the overall bit count is either
odd or even

314 Lecture – Error Correction

Parity

Odd parity: 00101010p1 00101110p2

p1=0, p2=1

Even parity: 00101010p1 00101110 p2

p1=1, p2=0

All error correction uses parity bits, usually
many of them, each checking some of the bits
so that the pattern of bits where parity fails
indicates the position of the error

Parity is often described using:
A message of content and clarity,

Has gotten to be quite a rarity –

To combat the terror

Of serious error,

Use bits of appropriate parity!

314 Lecture – Error Correction

How many parity bits do we need?

We have an 8-bit message

If we use 1 parity bit, the message
either fails or succeeds

If we break the message into 2 and
use 2 parity bits on the message,
one of four conditions may occur

Typically for n parity checks there
are 2n possible combinations for
success or failure

314 Lecture – Error Correction

Forward Error Correction – Hamming
Codes

With a message of k = 2n – 1 bits,
proper coding of an n-bit error field
should be able to indicate one of 2n

conditions:

No error at all, OR

which of the k = 2n – 1 bits has a single
error

314 Lecture – Error Correction

Single Error Correcting Codes (SEC)

With k = 2n – 1 bits in the codeword
and n bits used for checking, there
are i = k – n bits of available
information

This leads to the family of possible
Single Error Correcting (SEC) codes,
described by their
(codeword_length, data_length)

314 Lecture – Error Correction

SEC

(63,57)57636

(31,26)26315

(15,11)11154

(7,4)473

(3,1)132
A 2-out-of-3 majority code

The ‘usual’ Hamming Code

We use a version of this one

Descriptionikn

There are many codes that fit this specification,
but the simplest and oldest is the Hamming
Code

314 Lecture – Error Correction

SEC ctd.

To handle 8-bit data, we must use
the (15,11) code, discarding 3 data
bits to get a (12,8) code

Take a 12-bit ‘word’ with bits numbered
1…12

Allocate bits 20..n-1 to parity bits (1,2,4,8)
leaving the rest to data

Generate parities according to the the table:

314 Lecture – Error Correction

SEC ctd.

XXXXXGroup 4

XXXXXGroup 3

XXXXXXGroup 2

XXXXXXGroup 1

m8m7m6m5p4m4m3m2p3m1p2p1

121110987654321

Parity 1 checks all positions whose 1st lsd = 1

Parity 2 checks all positions whose 2nd lsd = 1

Assume an 8-bit message:

m1 m2 m3 m4 m5 m6 m7 m8

And 4 parity bits p1 p2 p3 p4

314 Lecture – Error Correction

Example

The 8-bit information word 01001010 expands first to
pp0p100p1010, creating space for the parity bits

Assume odd parity (which ensures that there is at least 1
1-bit)

XXXXXGroup 4

XXXXXGroup 3

XXXXXXGroup 2

XXXXXXGroup 1

0101p4001p30p2p1

121110987654321

314 Lecture – Error Correction

Example Ctd.

XXXXXGroup 4

XXXXXGroup 3

XXXXXXGroup 2

XXXXXXGroup 1

0101p4001p30p2p1

121110987654321

p4 = 11,0,1,0p4 checks p4, m5, m6, m7, m8

p3 = 01,0,0,0p3 checks p3, m2, m3, m4, m8

p2 = 00,0,0,0,1p2 checks p2, m1, m3, m4, m6, m7

p1 = 00,1,0,1,1p1 checks p1, m1, m2, m4, m5, m7Then,

The final code word is 000010011010 (parity bits
underlined)

314 Lecture – Error Correction

Checking for an error

We send the message: 000010011010

But get: 000011011010

Without error correction we extract the
message: 01101010

Which is not equal to: 01001010

We need to count the 1s at each mask
If the count is odd, generate a syndrome bit=0

If the count is even, generate a syndrome bit=1

314 Lecture – Error Correction

Correction from Lecture Handouts

Groups 2 and 3 fail; the error bit is in 0110 = 6

Correct the received data to: 000010011010

Delete the parity bits: 01001010

Which is the same as the original: 01001010

Syn-
drome

Count

X

X

0

3

2

2

3

0XXXXGroup 4

1XXXXGroup 3

1XXXXXXGroup 2

0XXXXXXGroup 1

10110110000

314 Lecture – Error Correction

Error Correction and Detection

The number locating the error is known
as the syndrome, and is usually zero if no
error

We can add a single overall parity bit to
get a SECDED code (Single Error
Correcting, Double Error Detecting)

If two bits are corrupted, the overall
parity is still OK, but at least one internal
parity fails, signaling an uncorrectable
error

314 Lecture – Error Correction

FEC Ctd.

Codes which correct multiple errors are
much more difficult

Compact discs have very powerful error
correction

BER is the bit error rate in reading from the
CD
• BER = the percentage of bits that have errors

The maximum correctable burst is 4000 data
bits

Uncorrected errors = < 1 in 750 hours = BER
10-3

Undetectable errors; BER = 10-4

314 Lecture – Error Correction

Error Correction with ARQ

Data communications errors tend to
be rare and occur in bursts

Both aspects make it very difficult to
design good error correction codes

It is more efficient to use very
powerful error detection, with
retransmission (Automatic Repeat
Request – ARQ)

314 Lecture – Error Correction

ARQ

None of these checksums (1s complement,
Fletcher, Alder or CRC is designed to correct
errors (although some can do that to a very
limited extent as in ATM cell headers); they are
designed as error detectors. (The Hamming is a
Single-Error-Correcting code [SEC]; with an
extra parity bit it becomes a Double-Error-
Detecting code as well [SEC-DED], but no more)

All are designed to give very good error
detection (undetected errors often less than 1 in
109)

The checksums all cover entire messages

Generally we ignore character parity from now
on

314 Lecture – Error Correction

Additive Checksums

These codes work by performing
arithmetic addition on the words of
the message

The simplest is the TCP/IP
checksum, which is the 1s
complement sum of all of the (16
bit) words of the message – assume
32-bit arithmetic

314 Lecture – Error Correction

TCP/IP Checksum

It is simple but not very good
An error in one bit has a rather local effect on
the checksum

All words are treated equally; it is insensitive
to transpositions

Better checksums give different weights
to different message positions

sum += word; //do the addition

while (sum > 0xFFFF) //if beyond 16 bits

sum = (sum & 0xFFFF) //isolate 16 low bits

+ (sum >> 16) //and add the ‘overflow’

314 Lecture – Error Correction

Recommended Reading

Understanding Data
Communications and Networks

Pages 241 – 244 (Hamming Codes –
Single bit error correction)

