
314 Lecture - Checksums 1

Correction from Monday’s Lecture

Groups 2 and 3 fail; the error bit is in 0110 = 6

Correct the received data to: 000010011010

Delete the parity bits: 01001010

Which is the same as the original: 01001010

Syn-
drome

Count

X

X

0

3

2

2

3

0XXXXGroup 4

1XXXXGroup 3

1XXXXXXGroup 2

0XXXXXXGroup 1

10110110000

314 Lecture - Checksums 2

Error Detecting Checksums - Outline

Introduction

Fletcher Checksum

Alder Checksum

Polynomial Checksums

CRC Checksums

314 Lecture - Checksums 3

Introduction

Checksums are used to detect errors

Send the message and append a
checksum

The receiver detaches the messages
and performs the same calculations
on the message.

Receiver then checks if the resulting
checksum = the received checksum

314 Lecture - Checksums 4

Fletcher’s Checksum

Another variant of 1s complement
checksum

Slightly slower, and more complicated to
implement

Can overcome the problems of simply
summing up all the bytes
• Can detect inserting/deleting zero byte values

• Incrementing/decrementing of bytes in opposite
directions

• Reordering of bytes

314 Lecture - Checksums 5

Fletcher’s Checksum Ctd.

Calculated over sequences of 2 octets

Has sums modulus 255

Uses two sums, s1 and s2
A straight 1s complement sum
• s1 = (s1 + ci) mod 255

A higher order sum of running sums
• s2 = (s1 + s2) mod 255

Checksum is the 16-bit concatenation of
s1 and s2

Checksum=(256*s1+s2);

The result is correct if either s1 or s2 are
zero

314 Lecture - Checksums 6

Fletcher’s Checksum

Stated to be nearly as powerful as
CRC-16 checks

It detects

All single bit errors

All double bit errors

All but 0.000019% of burst errors up to
length 16

All but 0.0015% of longer burst errors

314 Lecture - Checksums 7

Fletcher’s Checksum Code

int s1 = 0, s2 = 0; // initialize checksums

for (int i = 0; i < nChars; i++) // scan the
// characters

{

s1 += c[i]; // add in the character

while (s1 >= 255){ // reduce modulo 255

s1 -= 255;

}

s2 += s1; // get the sum of sums

while (s2 >= 255){ // modulo 255

s2 -= 255;

}

}

314 Lecture - Checksums 8

Alder-32 Checksum

Almost as reliable as CRC-32

But can be forged easily and is not ideal
against intentional modification

Modification on the Fletcher checksum

Not very good on short messages shorter
than a few 100 bytes as checksums for
these messages have poorer coverage of
the 32 available bits

314 Lecture - Checksums 9

Alder-32 Algorithm

Same as Fletchers checksum but uses prime
number modulo and 16-bit sums

Values are concatenated into a 32-bit integer

Calculate two 16-bit checksums, s1 and s2
s1 = (s1 + ci) mod 65521

s2 = (s1 + s2) mod 65521

sums are done modulo 65521
The largest prime number < 216

The checksum is the 32 bits 65536*s1 + s2

314 Lecture - Checksums 10

Modulus Checks

This important class of checks is an
extension of simple parity. It can be
demonstrated by some decimal
examples

Example

k = 23145

314 Lecture - Checksums 11

Modulus Checks - Example

Choose an agreed modulus, m
A prime number

Just less than a power of 10
• m = 7
• m = 97

Extend the number by zeroes as many as digits in the
modulus

Divide the extended number by m and get the remainder
r

231450 mod 7 =2

2314500 mod 97 = 80

Replace the zero extension with (m-r), to give
(m – 2) = 7 – 2 = 5 = 231455

(m – 80) = 97 – 80 = 17 = 2314517

314 Lecture - Checksums 12

Modulus Checks - Example

Encode or transmit this new extended
number

To check on reception, divide the received
number by the agreed modulus

The remainder should be zero

Discard the last (extension or remainder)
digits and deliver the preceding digits as
the verified number

314 Lecture - Checksums 13

Polynomials involved in checking

The following checks work on bit vectors, and
regards the bits as coefficients of polynomial in
some arbitrary variable x

i(x) Information The information or data to be
checked

g(x) Generator The system-defined divisor
polynomial

c(x) Codeword What is transmitted; i(x) with
(i(x) mod g(s)) appended

e(x) Error The error vector; e(x)=xi for a
single bit error

v(x) Received What is received; v(x)=e(x)+c(x)

314 Lecture - Checksums 14

Polynomials involved in checking

Calculate the syndrome

S(x) = v(x) mod g(x)
= [e(x) + c(x)] mod g(x)
= e(x) mod g(x) + c(x) mod g(x)
= e(x) mod g(x) + 0 by construction

The syndrome s(x) is a function only
of the error vector e(x)

314 Lecture - Checksums 15

Cyclic Redundancy Checks (CRC)

Most checking now uses Cyclic Redundancy
Checks, which treats the bits of the message as
coefficients of an “information polynomial” i(x),
divides it by another “generator” polynomial g(x)
and sends the remainder as the check digits at
the end of the message

The principles are identical to the previous slide,
but details are different

314 Lecture - Checksums 16

Cyclic Redundancy Checks

Does error checking based on
polynomial division

Each bit in the string is interpreted
as a polynomial

The set of polynomials where each
coefficient is 1 bit

100101 = x5 + x2 + 1

100000111 = x8 + x2 + x + 1

314 Lecture - Checksums 17

CRC Algorithm

Given a bit string, append several 0s and call it b
Let b(x) be the polynomial corresponding to b

Divide b(x) by an agreed on polynomial g(x) –
the generator polynomial and determine the
remainder r(x)
Define t(x) = b(x) – r(x)
Transmit t, the bit string corresponding to t(x)
Let t’ represent the bit stream the receiver gets
and t’(x) the associated polynomial. The
receiver divides t’(x) by g(x)

If there is a 0 remainder t = t’
Otherwise there was an error

314 Lecture - Checksums 18

Polynomial Division

Like conventional polynomial division but we use
modulo 2 arithmetic

Addition
• 0 + 0 = 0

• 1 + 0 = 1

• 0 + 1 = 1

• 1 + 1 = 0

Subtraction
• 0 – 0 = 0

• 1 – 0 = 1

• 0 – 1 = 1

• 1 – 1 = 0

Modulo 2 addition and subtraction correspond to XOR

314 Lecture - Checksums 19

Example of Modulo 2 Polynomial
Division

X3X7 +

x

xX2 +X4 +

x2X4 +

X2X3 +X5 +

X3X4 +X5 +

X4X5 + X7 +

X6X7 +X9 +

X3X6 + X9 +X3 + x + 1

xX2 +X4 +X6 +

314 Lecture - Checksums 20

CRC Example

Can use synthetic division by substituting a bit
string for the polynomial

x3 + x + 1 = 1011

x9 + x6 + x4 + x2 = 1001010100

Get CRC i(x)=1001001, with generator
g(x)=1011

314 Lecture - Checksums 21

CRC Example

010

-

0010

1101-

0101

1101-

01110

1101-

0001

1101

00010010011 0 1 1

0110101

Add the remainder to the
original i(x)
Message with checksum

is 1001001010

Data = 1001001

Remainder = 010

Message =
1001001010

314 Lecture - Checksums 22

Checking the CRC

Divide c(x)=1001001010 by g(x) =
1011

Divide the received codeword v(x)
by g(x), without extending by 4
zeros

314 Lecture - Checksums 23

Correction from handouts -
Checking the CRC

Remainder = 0

Message is Correct

The quotient is
discarded; only the
fact that the
remainder is zero or
non-zero is important

000

-

0010

1101-

1101

1101-

01110

1101-

0001

1101

01010010011 0 1 1

0110101

314 Lecture - Checksums 24

Checking the CRC

Now assume the received codeword

v(x) = 1001101010

Here v(x) = c(x) + e(x); where e(x)
≠ 0; e(x) = 0000100000

314 Lecture - Checksums 25

Checking the CRC

Remainder is non-
zero – checksum
failed

111

-

1010

1101-

0011

1101-

101100

1101-

0101

1101

01010110011 0 1 1

1100101

314 Lecture - Checksums 26

Construction of a generator
polynomial

A single bit error has e(x) = xi. If g(x) has two
or more terms it will never divide e(x) and all
single-bit errors will be detected

Two isolated single bit errors have e(x)=xi (xk +
1). Find g(x) which does not divide xk + 1, for k
up to message length. Use a computer search;
for example x15 + x14 + 1 does not divide xk + 1
for k < 32768

If there are an odd number of bits in error, then
e(x) has an odd number of bits. As no
polynomial with an odd number of bits has (x +
1) as a factor, make g(x) = (x+1)(… …)

314 Lecture - Checksums 27

Construction of generator polynomial

A code with r check bits will detect
all burst errors of length < r
If the burst has length r + 1, r(x)
will be zero only if r(x) = g(x), and
with the probability of 1/2r-1

For longer bursts the probability of
an undetected error is 1/2r

314 Lecture - Checksums 28

Standard CRC polynomials

These are all predefined and are agreed between sender and
receiver

CRC-12 x12+x11+x3+x+1 Old banking etc codes (6 bit)

CRC-16 x16+x15+x2+x+1 North American SDLC (8 bit)

CRC-ITU x16+x12+x5+x+1 ITU standard HDLC (8 bit)

IEEE 802 x32+x26+x23 +x22 IEEE 802 LAN standards

+x16 +x12 +x11 +x10 and others

+x8 +x7 +x5 +x4 +x2

+x + 1

ATM HEC x8+x2+x+1 ATM cell headers

ATM AAL3/4 x10+x9 +x5 +x4+x+1 some ATM traffic

The CRC-16 and CRC-ITU checks can detect

All bursts ≤ 16 bits

All odd-bit errors

99.998% of error bursts exceeding 17 bits

314 Lecture - Checksums 29

Misconceptions

The generator is
agreed between the
sender and receiver
and is not transmitted

A disadvantage of CRC-16 is that
you must send also the generator
polynomial

A 16-bit additive
checksum is about as
good as a 10-bit CRC

A 1s complement check can detect
only a single-bit error

They are not designed
to correct errors, but
give good error
detection

A disadvantage of CRC-16, Fletcher
and 1s complement sums is that
they cannot correct an error

CommentAlleged disadvantage

314 Lecture - Checksums 30

Misconceptions

All of them must send
the checksum with
the message!

Some of them are inefficient
because we must send the
checksum with the message

It is hard to make,
but is then defined in
the standard

A disadvantage of CRC-16 is that its
generator is difficult to make

CommentAlleged disadvantage

314 Lecture - Checksums 31

Required Reading

Understanding Data
Communications and Networks

Pages 231 - 240

