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Correction from Monday’s Lecture

Groups 2 and 3 fail; the error bit is in 0110 = 6

Correct the received data to: 000010011010

Delete the parity bits: 01001010

Which is the same as the original:      01001010

Syn-
drome

Count

X

X

0

3

2

2

3

0XXXXGroup 4

1XXXXGroup 3

1XXXXXXGroup 2

0XXXXXXGroup 1

10110110000
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Error Detecting Checksums - Outline

Introduction

Fletcher Checksum

Alder Checksum

Polynomial Checksums

CRC Checksums
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Introduction

Checksums are used to detect errors

Send the message and append a 
checksum

The receiver detaches the messages 
and performs the same calculations 
on the message. 

Receiver then checks if the resulting 
checksum = the received checksum
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Fletcher’s Checksum

Another variant of 1s complement 
checksum

Slightly slower, and more complicated to 
implement

Can overcome the problems of simply 
summing up all the bytes
• Can detect inserting/deleting zero byte values

• Incrementing/decrementing of bytes in opposite 
directions

• Reordering of bytes
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Fletcher’s Checksum Ctd.

Calculated over sequences of 2 octets

Has sums modulus 255

Uses two sums, s1 and s2
A straight 1s complement sum
• s1 = (s1 + ci) mod 255

A higher order sum of running sums
• s2 = (s1 + s2) mod 255

Checksum is the 16-bit concatenation of 
s1 and s2

Checksum=(256*s1+s2);

The result is correct if either s1 or s2 are 
zero
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Fletcher’s Checksum

Stated to be nearly as powerful as 
CRC-16 checks

It detects

All single bit errors

All double bit errors

All but 0.000019% of burst errors up to 
length 16

All but 0.0015% of longer burst errors
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Fletcher’s Checksum Code

int s1 = 0, s2 = 0; // initialize checksums

for (int i = 0; i < nChars; i++) // scan the 
// characters

{

s1 += c[i]; // add in the character

while (s1 >= 255){ // reduce modulo 255

s1 -= 255;

}

s2 += s1; // get the sum of sums

while (s2 >= 255){ // modulo 255

s2 -= 255;

}

}
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Alder-32 Checksum

Almost as reliable as CRC-32

But can be forged easily and is not ideal 
against intentional modification

Modification on the Fletcher checksum

Not very good on short messages shorter 
than a few 100 bytes as checksums for 
these messages have poorer coverage of 
the 32 available bits
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Alder-32 Algorithm

Same as Fletchers checksum but uses prime 
number modulo and 16-bit sums

Values are concatenated into a 32-bit integer

Calculate two 16-bit checksums, s1 and s2
s1 = (s1 + ci) mod 65521

s2 = (s1 + s2) mod 65521

sums are done modulo 65521 
The largest prime number < 216

The checksum is the 32 bits 65536*s1 + s2
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Modulus Checks

This important class of checks is an 
extension of simple parity.  It can be 
demonstrated by some decimal 
examples

Example 

k = 23145
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Modulus Checks - Example

Choose an agreed modulus, m
A prime number

Just less than a power of 10
• m = 7
• m = 97

Extend the number by zeroes as many as digits in the 
modulus

Divide the extended number by m and get the remainder 
r

231450 mod 7 =2

2314500 mod 97 = 80

Replace the zero extension with (m-r), to give
(m – 2 ) = 7 – 2 = 5 = 231455

(m – 80 ) = 97 – 80  = 17 = 2314517
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Modulus Checks - Example

Encode or transmit this new extended 
number

To check on reception, divide the received 
number by the agreed modulus

The remainder should be zero

Discard the last (extension or remainder) 
digits and deliver the preceding digits as 
the verified number
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Polynomials involved in checking

The following checks work on bit vectors, and 
regards the bits as coefficients of polynomial in 
some arbitrary variable x

i(x) Information The information or data to be 
checked

g(x) Generator The system-defined divisor 
polynomial

c(x) Codeword What is transmitted; i(x) with 
(i(x) mod g(s)) appended

e(x) Error The error vector; e(x)=xi for a 
single bit error

v(x) Received What is received; v(x)=e(x)+c(x)
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Polynomials involved in checking

Calculate the syndrome

S(x) = v(x) mod g(x)
= [e(x) + c(x)] mod g(x)
= e(x) mod g(x) + c(x) mod g(x)
= e(x) mod g(x) + 0 by construction

The syndrome s(x) is a function only 
of the error vector e(x)
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Cyclic Redundancy Checks (CRC)

Most checking now uses Cyclic Redundancy 
Checks, which treats the bits of the message as 
coefficients of an “information polynomial” i(x),
divides it by another “generator” polynomial g(x)
and sends the remainder as the check digits at 
the end of the message

The principles are identical to the previous slide, 
but details are different



314 Lecture - Checksums 16

Cyclic Redundancy Checks

Does error checking based on 
polynomial division

Each bit in the string is interpreted 
as a polynomial

The set of polynomials where each 
coefficient is 1 bit

100101 = x5 + x2 + 1

100000111 = x8 + x2 + x + 1 
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CRC Algorithm

Given a bit string, append several 0s and call it b
Let b(x) be the polynomial corresponding to b

Divide b(x) by an agreed on polynomial g(x) –
the generator polynomial and determine the 
remainder r(x)
Define t(x) = b(x) – r(x)
Transmit t, the bit string corresponding to t(x)
Let t’ represent the bit stream the receiver gets 
and t’(x) the associated polynomial.  The 
receiver divides t’(x) by g(x)

If there is a 0 remainder t = t’
Otherwise there was an error
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Polynomial Division

Like conventional polynomial division but we use 
modulo 2 arithmetic

Addition
• 0 + 0 = 0

• 1 + 0 = 1

• 0 + 1 = 1

• 1 + 1 = 0

Subtraction
• 0 – 0 = 0

• 1 – 0 = 1

• 0 – 1 = 1

• 1 – 1 = 0

Modulo 2 addition and subtraction correspond to XOR
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Example of Modulo 2 Polynomial 
Division

X3X7 +

x

xX2 +X4 +

x2X4 +

X2X3 +X5 + 

X3X4 +X5 +

X4X5 + X7 +

X6X7 +X9 +

X3X6 + X9 +X3 + x + 1

xX2 +X4 +X6 +
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CRC Example

Can use synthetic division by substituting a bit 
string for the polynomial

x3 + x + 1 = 1011

x9 + x6 + x4 + x2 = 1001010100

Get CRC i(x)=1001001, with generator 
g(x)=1011
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CRC Example

010

-

0010

1101-

0101

1101-

01110

1101-

0001

1101

00010010011 0 1 1

0110101

Add the remainder to the 
original i(x)
Message with checksum 

is 1001001010

Data = 1001001

Remainder = 010

Message = 
1001001010
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Checking the CRC

Divide c(x)=1001001010 by g(x) = 
1011

Divide the received codeword v(x)
by g(x), without extending by 4 
zeros
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Correction from handouts -
Checking the CRC

Remainder = 0

Message is Correct

The quotient is 
discarded; only the 
fact that the 
remainder is zero or 
non-zero is important

000

-

0010

1101-

1101

1101-

01110

1101-

0001

1101

01010010011 0 1 1

0110101
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Checking the CRC

Now assume the received codeword

v(x) = 1001101010

Here v(x) = c(x) + e(x); where e(x) 
≠ 0; e(x) = 0000100000
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Checking the CRC

Remainder is non-
zero – checksum 
failed

111

-

1010

1101-

0011

1101-

101100

1101-

0101

1101

01010110011 0 1 1

1100101
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Construction of a generator 
polynomial

A single bit error has e(x) = xi. If g(x) has two 
or more terms it will never divide e(x) and all 
single-bit errors will be detected

Two isolated single bit errors have e(x)=xi (xk + 
1). Find g(x) which does not divide xk + 1, for k
up to message length. Use a computer search; 
for example x15 + x14 + 1 does not divide xk + 1 
for k < 32768

If there are an odd number of bits in error, then 
e(x) has an odd number of bits. As no 
polynomial with an odd number of bits has (x + 
1) as a factor, make g(x) = (x+1)(… …)



314 Lecture - Checksums 27

Construction of generator polynomial

A code with r check bits will detect 
all burst errors of length < r
If the burst has length r + 1, r(x)
will be zero only if r(x) = g(x), and 
with the probability of 1/2r-1

For longer bursts the probability of 
an undetected error is 1/2r
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Standard CRC polynomials

These are all predefined and are agreed between sender and 
receiver

CRC-12 x12+x11+x3+x+1 Old banking etc codes (6 bit)

CRC-16 x16+x15+x2+x+1 North American SDLC (8 bit)

CRC-ITU x16+x12+x5+x+1 ITU standard HDLC (8 bit)

IEEE 802 x32+x26+x23 +x22 IEEE 802 LAN standards

+x16 +x12 +x11 +x10 and others

+x8 +x7 +x5 +x4 +x2

+x + 1

ATM HEC     x8+x2+x+1 ATM cell headers

ATM AAL3/4 x10+x9 +x5 +x4+x+1   some ATM traffic

The CRC-16 and CRC-ITU checks can detect

All bursts ≤ 16 bits

All odd-bit errors

99.998% of error bursts exceeding 17 bits
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Misconceptions

The generator is 
agreed between the 
sender and receiver 
and is not transmitted

A disadvantage of CRC-16 is that 
you must send also the generator 
polynomial

A 16-bit additive 
checksum is about as 
good as a 10-bit CRC

A 1s complement check can detect 
only a single-bit error

They are not designed 
to correct errors, but 
give good error 
detection

A disadvantage of CRC-16, Fletcher 
and 1s complement sums is that 
they cannot correct an error

CommentAlleged disadvantage
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Misconceptions

All of them must send 
the checksum with 
the message!

Some of them are inefficient 
because we must send the 
checksum with the message

It is hard to make, 
but is then defined in 
the standard

A disadvantage of CRC-16 is that  its 
generator is difficult to make

CommentAlleged disadvantage
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Required Reading

Understanding Data 
Communications and Networks

Pages 231 - 240


