Correction From Tuesdays’ Lecture -
Checking the CRC

1011‘

1 010110 = Remainder =20
1001001010 5 Message is Correct
-1011 m The quotient is
e wy discarded; only the
1000 fact that the
- 1011 remainder is zero or
01110 non-zero is important
- 1011
1011
-1011
000

314 Lecture — Data Compression

Data Compression

m Introduction
m Huffman
ml /W

m Burrows Wheeler Transform

314 Lecture — Data Compression

Compression Techniques

m Variable length codes

Huffman, or similar variable length codes
Assign short codes to more frequent symbols
Needs a coding dictionary

Not the most effective

m Run-length coding

s Many files have lots of repeating characters, for
example faxes

= 00000000000000111111100000000111 may be
encoded as 14,0,7,1,8,0,3,1
m Codebooks

m Assign codes to frequent words and then run as an
extension to VL codes

m Excellent in some contexts but inflexible

314 Lecture — Data Compression

Compression Techniques

m Dictionary-based

m Use redundancy in text to replace already known letter
sequences or phrases by dictionary indices

m These compressors learn from the text and adapt to it

m Relative or Differential coding
s Used for image data
s Sends the changes between frames

m Statistical-based
m Assign each symbol a probability
s Encode the more probable symbol using few bits

314 Lecture — Data Compression

Huffman Encoding

m Obtain a symbol frequency count for
the message

m Build the Huffman tree
m Encode the message

m I[f the decoder does not have access
to the same code-set, this will need
to be transmitted with the message

314 Lecture — Data Compression

Huffman Encoding - Example

m Assume a message has the following
frequencies

m{a=4,e=12,i=8,0=2,u=2,y=1}

m Assume every symbol is a single leaf
node

m Build a binary tree by continually
adding nodes using the two lowest
frequencies

m The first node will consist of u,y

314 Lecture — Data Compression

Huffman Tree - Example

1. {a=4,e=12,i=8,0=2,u=2,y=1} 4, {e=12,i=8,aouy=9}

3 17
y/\u i/\9
2. {a=4,e=12,i=8,0=2,uy=3} a/\s
5 N
o) 3
o) 3
N Y =
y u 5. {e=12, iaouy=17}
3. {a=4,e=12,i=8,ouy=5} 29
. RN
e 17
a/\ N
2 6. {a=110,e=0,i=10, ' 2
o) 3 _ _
0=1110,u=11111, a 5
y/\u y=11110} & 3

Y u

314 Lecture — Data Compression

Huffman Tree

mMore frequent symbols have shorter codes

m | he decoder needs to have access to this code
set

314 Lecture — Data Compression

LZW Compression

m LZW was proposed by Welch as a variant
of @a compressor originally proposed by
Ziv & Lempel, and is the compressor
normally used in data communications

m Uses a dictionary of known phrases or
letter sequences
m The dictionary is initialized with all possible

character codes, e.g. 0...255

m Compressor accepts input symbols as
long as the most recent symbols
correspond to known phrases in the
dictionary

314 Lecture — Data Compression

LZW Compression

m As soon as the matching fails, the
compressor emits the dictionary index of
the known phrase and then creates a new
phrase consisting of the known phrase
followed by the character which ‘failed’

m Continues building a new test string for
phrase comparisons

m The dictionary is initialized to all values,
0...255

314 Lecture — Data Compression

Example of LZW Compression

m Encoder input is “the_theme_that_they_heard”
m Assume an empty dictionary

the_theme_that_they_heard

Dictionary

Pass | Input | Test Emit Make | Comment Index | Contents
string entry

1 t t 0 256
2 ASCII
3 255 codes
4 256 NA
5 257 NA
6 258 NA
7 259 NA
8 260 NA
9 261 NA
10 262 NA

314 Lecture — Data Compression

Example of LZW Compression

m Encoder input is “the_theme_that_they_heard”

the_theme_that_they_ heard Dictionary

Pass | Input | Test Emit Make | Comment Index | Contents
string entry

1 t t t exists 0 256

2 h th t th ASCII

3 e he h he 255 codes

4 _ e_ e e_ 256 | th

5 t _t _ _t 257 he

6 h th the exists — continue 258 e_

7 e the th(256) | the 259 | _t

8 m em e em 260 the

9 e me m me 261 em

10 _ e_ e_exists 262 me

314 Lecture — Data Compression

Example of LZW Compression

the_theme_that_they_ heard Dictionary

Pass | Input | Test Emit Make | Comment Index | contents
string Entry

11 t e t e (258) [e_t 263 e t

12 h th th exists 264 | tha

13 a tha th(256) | tha 265 at

14 t at a at 266 t

15 | _ t t t 267 | _th

16 t _t _t exists 268 hey

17 h _th _t(259) | _th 269 |y_

18 e he he exists

19 y hey he(257) | hey

20 | _ y_ y y_

314 Lecture — Data Compression

Example of LZW Compression

the_theme_that_they_heard Dictionary

Pass | Input | Test Emit Make | Comment Index | Contents
string Entry

21 h _h _ _h 270 | _h

22 e he he exists 271 hea

23 a hea he(257) | hea 272 ar

24 r ar a ar 273 rd

25 d rd r rd

314 Lecture — Data Compression

LZW Decoding

m The basic steps are
m Remember the previous phrase

m Receive the current index and get its
current phrase

m Emit the current phrase

m Create a new dictionary entry of the
previous phrase followed by the first
symbol of the current phrase

314 Lecture — Data Compression

Example of LZW Decompression

the_theme_that_they_ heard Dictionary

Pass Receive Make deliver Index | Contents
codeword | entry

1 t t 0 256

2 h th h ASCII

3 e he e 255 codes

4 _ e_ _ 256 th

5 (256) th | _t th 257 he

6 e the e 258 e_

7 m em m 259 _t

8 (258) e_ | me e_ 260 the

9 (256) th e t th 261 em

10 a tha a 262 me

11 t at t 263 e_t

12 (259) _t |t_ _t 264 tha

314 Lecture — Data Compression

Summary of VL and dictionary-based
Codes

m Huffman maps fixed length symbols to
variable length codes
s Can be made adaptive
s Optimal when symbol frequencies are powers
of two
m LZW is a dictionary-based compression
method

m Builds a growing dictionary of phrases which
are mapped to a sequentially increasing code-
set

314 Lecture — Data Compression

BZIP2 Compressor (Burrows-Wheeler
Transform)

m Write out all cyclic permutations of
the input as rows of a matrix

m Sort the rows into alphabetic order,
this collects together similar
contexts

m Transmit the /ast symbol of each
row, and the index of the first row

m Similar contexts produce similar
symbols and often runs of the one
symbol

314 Lecture — Data Compression

BZIP2 Compressor (Burrows-Wheeler
Transform)

m Use a Move-To-Front algorithm to recode
each symbol
m Replace each by the number of different

symbols seen since it was last encountered

m This produces a skewed symbol distribution

Value

0

1

2

3

4

5

6

7

Frequency

66.8%

9.0%

4

.0% | 2.9%

2.3%

1.8%

1.6%

1.4%

mUse a Huffman encoder on the MTF output

314 Lecture — Data Compression

BWT Example

m Get all permutations
m Sort them

m Transmit the last column along with the index of the
original string to the MTF

String Row | String 6, tkkaaa
takaka 1 akakat
akakat 2 akatak
kakata 3 atakak
akatak 4 kakata
kataka 5 kataka
atakak 6 takaka

314 Lecture — Data Compression

Reversing BWT

m We have the last column, and therefore can
build up the first column of the matrix

m Sorting the pairs reveals the second column
m The transmitted index reveals the original string

Row | String Row | String

1 a????t 1 ak???t

2 a????k 2 ak???k
3 a????k 3 ak???k
4 k????a 4 ka???a
5 k????a 5 ka???a
6 t????a 6 ta???a

314 Lecture — Data Compression

MTF Example

m This output is then transmitted to the
Huffman encoder

m [s easily reversed

m Benefits become apparent when using a
longer string
m gaaaaaaaakkkkkkkkkkkkkkkk
= 000000000100000000000000

314 Lecture — Data Compression

MTF Example

m [nitialize the MTF alphabet 0..#A
m After encoding each symbol, ‘push’ it to

the front of the MTF alphabet
Symbol | Code Symbol | Before | After Emitted
A 0 MTF MTF Code
012|012
K : t a k t|t a k 2
t 2 k |t a k|lkt al 2
Kk k t alk t a 0
a k t ala k t 2
a a k t|a k t 0
a a k t|a k t 0

314 Lecture — Data Compression

Compression Results

mLZW - 4 - 4.5 bits per character or
50 - 55% of the original text size

m BZIP 2 - 2.5 bits per character or 25
— 30 % of the original text size

314 Lecture — Data Compression

Recommended Reading

m Understanding Data
Communications and Networks

m Pages 189 - 194 (Huffman Codes)
m Liv-Zempel Codes (LZW)

314 Lecture — Data Compression

