
314 Lecture – Data Compression

Correction From Tuesdays’ Lecture -
Checking the CRC

Remainder = 0

Message is Correct

The quotient is 
discarded; only the 
fact that the 
remainder is zero or 
non-zero is important

000

-

0010

1101-

1101

1101-

01110

1101-

0001

1101

01010010011 0 1 1

0110101



314 Lecture – Data Compression

Data Compression

Introduction

Huffman

LZW

Burrows Wheeler Transform



314 Lecture – Data Compression

Compression Techniques

Variable length codes
Huffman, or similar variable length codes

Assign short codes to more frequent symbols

Needs a coding dictionary

Not the most effective

Run-length coding
Many files have lots of repeating characters, for 
example faxes

00000000000000111111100000000111 may be 
encoded as 14,0,7,1,8,0,3,1

Codebooks
Assign codes to frequent words and then run as an 
extension to VL codes

Excellent in some contexts but inflexible



314 Lecture – Data Compression

Compression Techniques

Dictionary-based
Use redundancy in text to replace already known letter 
sequences or phrases by dictionary indices

These compressors learn from the text and adapt to it

Relative or Differential coding
Used for image data

Sends the changes between frames

Statistical-based
Assign each symbol a probability

Encode the more probable symbol using few bits



314 Lecture – Data Compression

Huffman Encoding

Obtain a symbol frequency count for 
the message

Build the Huffman tree

Encode the message

If the decoder does not have access 
to the same code-set, this will need 
to be transmitted with the message



314 Lecture – Data Compression

Huffman Encoding - Example

Assume a message has the following 
frequencies

{a=4,e=12,i=8,o=2,u=2,y=1}

Assume every symbol is a single leaf 
node

Build a binary tree by continually 
adding nodes using the two lowest 
frequencies

The first node will consist of u,y



314 Lecture – Data Compression

Huffman Tree - Example

1. {a=4,e=12,i=8,o=2,u=2,y=1}

y u

3

2. {a=4,e=12,i=8,o=2,uy=3}

3. {a=4,e=12,i=8,ouy=5}

o 3

5

y u

o 3

5

y u

9

a

4. {e=12,i=8,aouy=9}

o 3

5

y u

a

17

i 9

5. {e=12, iaouy=17}

o 3

5

y u

a

17

i 9

29

e

6. {a=110,e=0,i=10,

o=1110,u=11111,

y=11110}



314 Lecture – Data Compression

Huffman Tree

More frequent symbols have shorter codes

The decoder needs to have access to this code 
set



314 Lecture – Data Compression

LZW Compression

LZW was proposed by Welch as a variant 
of a compressor originally proposed by 
Ziv & Lempel, and is the compressor 
normally used in data communications

Uses a dictionary of known phrases or 
letter sequences

The dictionary is initialized with all possible 
character codes, e.g. 0…255

Compressor accepts input symbols as 
long as the most recent symbols 
correspond to known phrases in the 
dictionary



314 Lecture – Data Compression

LZW Compression

As soon as the matching fails, the 
compressor emits the dictionary index of 
the known phrase and then creates a new 
phrase consisting of the known phrase 
followed by the character which ‘failed’

Continues building a new test string for 
phrase comparisons

The dictionary is initialized to all values, 
0…255



314 Lecture – Data Compression

Example of LZW Compression

Encoder input is “the_theme_that_they_heard”

Assume an empty dictionary

NA26210

NA2619

NA2608

NA2597

NA2586

NA2575

NA2564

codes2553

ASCII…2

256 0tt1

ContentsIndexCommentMake 

entry

EmitTest 

string

InputPass

Dictionarythe_theme_that_they_heard



314 Lecture – Data Compression

Example of LZW Compression

Encoder input is “the_theme_that_they_heard”

me262e_existse__10

em261memmee9

the260emeemm8

_t259theth(256)thee7

e_258the exists – continuethh6

he257_t__tt5

th256e_ee__4

codes255hehhee3

ASCII…thtthh2

256 0t existstt1

ContentsIndexCommentMake 

entry

EmitTest 

string

InputPass

Dictionarythe_theme_that_they_heard



314 Lecture – Data Compression

Example of LZW Compression

y_yy__20

heyhe(257)heyy19

he existshee18

y_269_th_t(259)_thh17

hey268_t exists_tt16

_th267t_tt__15

t_266ataatt14

at265thath(256)thaa13

tha264th existsthh12

e_t263e_te_(258)e_tt11

contentsIndexCommentMake 

Entry

EmitTest 

string

InputPass

Dictionarythe_theme_that_they_heard



314 Lecture – Data Compression

Example of LZW Compression

rdrrdd25

rd273araarr24

ar272heahe(257)heaa23

hea271he existshee22

_h270_h__hh21

ContentsIndexCommentMake 

Entry

EmitTest 

string

InputPass

Dictionarythe_theme_that_they_heard



314 Lecture – Data Compression

LZW Decoding

The basic steps are

Remember the previous phrase

Receive the current index and get its 
current phrase

Emit the current phrase

Create a new dictionary entry of the 
previous phrase followed by the first 
symbol of the current phrase



314 Lecture – Data Compression

Example of LZW Decompression

tha264_tt_(259) _t12

e_t263tatt11

me262athaa10

em261the_t(256) th9

the260e_me(258) e_8

_t259memm7

e_258ethee6

he257th_t(256) th5

th256_e__4

codes255ehee3

ASCII…hthh2

2560tt1

ContentsIndexdeliverMake 
entry

Receive 
codeword

Pass

Dictionarythe_theme_that_they_heard



314 Lecture – Data Compression

Summary of VL and dictionary-based 
Codes 

Huffman maps fixed length symbols to 
variable length codes

Can be made adaptive

Optimal when symbol frequencies are powers 
of two

LZW is a dictionary-based compression 
method

Builds a growing dictionary of phrases which 
are mapped to a sequentially increasing code-
set



314 Lecture – Data Compression

BZIP2 Compressor (Burrows-Wheeler 
Transform)

Write out all cyclic permutations of 
the input as rows of a matrix

Sort the rows into alphabetic order, 
this collects together similar 
contexts

Transmit the last symbol of each 
row, and the index of the first row

Similar contexts produce similar 
symbols and often runs of the one 
symbol



314 Lecture – Data Compression

BZIP2 Compressor (Burrows-Wheeler 
Transform)

Use a Move-To-Front algorithm to recode 
each symbol

Replace each by the number of different 
symbols seen since it was last encountered

This produces a skewed symbol distribution

Use a Huffman encoder on the MTF output

1.4%1.6%1.8%2.3%2.9%4.0%9.0%66.8%Frequency

76543210Value



314 Lecture – Data Compression

BWT Example

Get all permutations

Sort them

Transmit the last column along with the index of the 
original string to the MTF

atakak

kataka

akatak

kakata

akakat

takaka

String

takaka6

kataka5

kakata4

atakak3

akatak2

akakat1

StringRow 6, tkkaaa



314 Lecture – Data Compression

Reversing BWT

We have the last column, and therefore can 
build up the first column of the matrix

Sorting the pairs reveals the second column

The transmitted index reveals the original string

t????a6

k????a5

k????a4

a????k3

a????k2

a????t1

StringRow

ta???a6

ka???a5

ka???a4

ak???k3

ak???k2

ak???t1

StringRow



314 Lecture – Data Compression

MTF Example

This output is then transmitted to the 
Huffman encoder

Is easily reversed

Benefits become apparent when using a 
longer string

aaaaaaaaakkkkkkkkkkkkkkkk
000000000100000000000000



314 Lecture – Data Compression

MTF Example

Initialize the MTF alphabet 0..#A

After encoding each symbol, ‘push’ it to 
the front of the MTF alphabet

a

a

a

k

k

t

0

k

k

k

t

t

a

1

a

a

k

k

t

a

0

k

k

t

t

a

k

1

0tta

0tta

2taa

0aak

2akk

2ktt

22

Emitted 

Code

After 

MTF

Before 

MTF

Symbol

2t

1K

0A

CodeSymbol



314 Lecture – Data Compression

Compression Results

LZW – 4 – 4.5 bits per character or 
50 – 55% of the original text size

BZIP 2 – 2.5 bits per character or 25 
– 30 % of the original text size



314 Lecture – Data Compression

Recommended Reading

Understanding Data 
Communications and Networks

Pages 189 – 194 (Huffman Codes)

Liv-Zempel Codes (LZW)


