
COMPSCI 314 S1 C

IPv6, UDP, TCP
ICMP, SSH, FTP



11 May 05314 S1C: IPv6, UDP, ICMP Page 2 of 32

Network Byte Order
Computers have many interesting and different conventions for 

the ordering of bits in bytes, bytes in words, and words in 
messages.

To give a uniform interpretation within the network, the Internet 
Standards specify a Network Byte Order for all fields 
interpreted by the network.

Integers within network headers must be sent with the bytes in 
decreasing numerical significance, most-significant byte first.

(The most-significant byte is nearest the start of the packet.)
This means that bytes or octets are transmitted in “raster-scan”

order, left to right, top to bottom, as we look at the diagrams.
User data may be converted to Network Byte Order at the choice 

of the user.

Bits within a byte are sent least-significant-bit first; see RFC 
2469 for comments on this



11 May 05314 S1C: IPv6, UDP, ICMP Page 3 of 32

IP Version 6  (IPv6)
[Shay 2nd Edition, pp 506-515]
IP Version 6 addresses several problems with the older 

IP (version 4), especially —
• Exhaustion of the 32-bit address space
• Fragmentation is difficult and expensive for routers
• The IPv4 header is too complex — many aspects can 

be removed to specialised headers

Other new features include —
• Autoconfigration (site-local addresses)
• Encryption (of header fields and/or user payload)



11 May 05314 S1C: IPv6, UDP, ICMP Page 4 of 32

The IPv6 Header

• The introduction is 64 bits long, and each address is two lots of 64 bits 
for better efficiency in fast processors

• The NEXT HEADER identifies either the header 
OR (on the last header)  the packet protocol (e.g. TCP)

0 4 8 12 16 20 24 28
0 Vers=6 Priority FLOW LABEL (24 bits)
4 PAYLOAD LENGTH NEXT HEADER HOP LIMIT
8
16 SOURCE ADDRESS (128 bits)
20
24
28
32 DESTINATION ADDRESS (128 bits)
36
40

Bit
Byte



11 May 05314 S1C: IPv6, UDP, ICMP Page 5 of 32

IPv6 Header Fields
• Hop Limit is set to the maximum number of hops and is 

decremented by each router. The packet is discarded if its hop 
limit becomes zero.
It is like the IPv4 ‘TIME TO LIVE’ (as it eventually developed, not 
as originally defined), but is not decremented by time.

• Flow Label is a unique identifier allocated by the source to a series 
of related packets. It allows packets to be treated similarly by
routers, such as following the same paths. (The flow label and 
source address may be used to retrieve cached route information.)
The flow label usually expires if not used for a while.

• Extension Headers are somewhat like IPv4 options. Each header 
(including the IPv6 header) indicates the nature of the next 
header, or the payload protocol if there are no more optional 
headers.

• Checksums are assumed to be handled by the underlying datalink
layer and are omitted from the IPv6 header.



11 May 05314 S1C: IPv6, UDP, ICMP Page 6 of 32

TCP and IP were originally designed for unreliable links with poor error 
checking. They therefore have multiple levels of overlapping 
checksums. With Ethernet we get that

• TCP check covers whole of user data + TCP header for a complete 
end- to-end check, including source and destination addresses

• IPv4 check covers just the IP header to minimise switching 
overheads

• Ethernet check is very strong and covers all of each IP packet
• IPv6 relies completely on the underlying checksums

Notes on Checksums

Hdr User Data

Hdr IPv4 packet

Addrs etc Ethernet frame FCS

TCP checksum



11 May 05314 S1C: IPv6, UDP, ICMP Page 7 of 32

IPv6 Extension Headers
• IPv6 moves some information from the IPv4 header 

into extension headers which follow the main IPv6 
header and have defined formats

• The IPv6 header has a ‘next header’ field which gives 
the type of the first header, and each header itself 
has a ‘next header’ field

Header types are —
• Authentication
• Destination options
• Fragmentation
• Hop-by-hop
• Routing
• Security



11 May 05314 S1C: IPv6, UDP, ICMP Page 8 of 32

IPv6 Fragmentation
• IPv6 routers and switches do not fragment packets 

en route; the sender is supposed to ensure that the 
packet fits within the MTU for the path

• If a user packet is too long, the sender must 
fragment it and create appropriate smaller packets, 
each with an appropriate fragment header to allow 
reassembly of the user packet

• There is a way for IPv6s host to discover path MTUs
• Summary: fragmentation is entirely the responsibility 

of the sender



11 May 05314 S1C: IPv6, UDP, ICMP Page 9 of 32

Connecting applications
• Data doesn’t just get sent from host to host
• Data is exchanged between applications on the hosts 

concerned
• A typical host runs multiple applications simultaneously: 

WWW, e-mail, FTP, networked games, SSH or Telnet, 
database server/client, NetLogin, …

• Problem: IP itself provides the means for routing 
between hosts, but not for routing between applications

• How do we indicate which application our IP packet’s 
payload originates from, and which application it is 
intended for?

• Need a higher order protocol to sort this one out! E.g., 
UDP or TCP



11 May 05314 S1C: IPv6, UDP, ICMP Page 10 of 32

The concept of ports
These are ‘addresses’ or identifying numbers 

for users of UDP and TCP, just like protocols 
or access points at lower layers —

• The LLC layer uses the DSAP to select the 
service, say IP

• IP uses its protocol field to select a network-
layer protocol such as TCP (or ICMP etc.)

• TCP uses the Destination Port to select the 
end-user service, e.g. FTP or e-mail.
Similarly, the Source Port identifies the 
sending user application



11 May 05314 S1C: IPv6, UDP, ICMP Page 11 of 32

More on ports
• TCP and UDP, the two most important 

protocols layered on top of IP, both 
implement ‘ports’

• An (IP) ‘port’ identifies a sending or receiving 
application

• Port numbers in TCP and UDP are 16 bit, 
i.e., we can address up to 65536 applications 
on each host with each protocol

• Low-numbered ports (< 1024) are reserved 
for ‘well-known’ services, such as e-mail, web, 
ssh, etc. 

• More on ports later!



11 May 05314 S1C: IPv6, UDP, ICMP Page 12 of 32

UDP and TCP
• UDP and TCP datagrams are encapsulated inside 

IP datagrams
• UDP – User Datagram Protocol:  

A connectionless best-effort protocol
• TCP – Transmission Control Protocol: 

A connection-oriented reliable byte stream protocol 
• UDP and TCP are ‘end-to-end network-layer

protocols’ – the two hosts involved are solely 
responsible for header, content, error detection, 
error recovery, etc. Other hosts just forward the 
encapsulating IP datagram without looking at the 
content (at least in theory, anyway!)



11 May 05314 S1C: IPv6, UDP, ICMP Page 13 of 32

User Datagram Protocol (UDP)

• UDP is used to send a single piece of information (byte 
block) from an application on one host to an application 
on another host via an agreed pair of ports

• Applications on each side are identified by their 
respective port numbers

• Delivery is ‘best effort,’ but not reliable – lost datagrams
are not detected or retransmitted by UDP itself

• UDP datagram is checksum protected for error detection 
(remember that IP only protects its header by checksum 
– why?)

• Error recovery must be implemented by the applications 
themselves (e.g., by means of a protocol on top of UDP)



11 May 05314 S1C: IPv6, UDP, ICMP Page 14 of 32

UDP datagram structure

Source port Destination port

Checksum Length

Data (variable length)

0 31



11 May 05314 S1C: IPv6, UDP, ICMP Page 15 of 32

Advantages and disadvantages of UDP

• Simple building block with almost ‘minimal’
design – easy to use as basis for higher-order 
protocols with maximal design flexibility ☺

• Widely implemented as part of the TCP/IP 
suite of protocols – every computer connected 
to the Internet can speak UDP too ☺

• No reliable delivery or error recovery /
• No flow control mechanisms – what happens if 

one host sends data at a faster rate than the 
receiving host can cope with? /



11 May 05314 S1C: IPv6, UDP, ICMP Page 16 of 32

Transmission Control Protocol (TCP)

• TCP is used to establish a bidirectional byte stream 
between two applications on two hosts (a TCP 
‘connection’)

• The byte stream is created by sending variable-
length blocks of bytes in a series of TCP segments. 
At most one TCP segment per IP datagram

• Applications are identified by their respective port 
numbers

• Byte stream is reliable – errors and missing data  
are detected and retransmission is requested

• Flow control mechanisms enable better utilisation of 
available bandwidth



11 May 05314 S1C: IPv6, UDP, ICMP Page 17 of 32

TCP datagram structure
0 4 10 16 31

bits
Source port Destination port

Sequence number
Acknowledgement number

HdrLen 000000 Flags Advertised window
Checksum UrgPtr

Options (variable length)

payload data (variable length)



11 May 05314 S1C: IPv6, UDP, ICMP Page 18 of 32

TCP sequence numbers
TCP uses a sliding window protocol, with a variable window size.

Sequencing is by a byte sequence count.
The sequence number is the sequential number of the first byte 

of this segment. (The very first byte is given a random
sequence number.)

• The acknowledgement number is the number of the next byte 
which the receiver expects. It acknowledges all preceding 
bytes of the data stream. This field is used only if the ACK flag 
is set

• Note that if the acknowledgement from one segment is lost, a 
later acknowledgement may well replace it, with no error seen

The Header Length is the length of the TCP header, in 32-bit 
‘words,’ of all the options field(s), OR is the offset, in words, 
where the payload (data) starts.



11 May 05314 S1C: IPv6, UDP, ICMP Page 19 of 32

TCP flags
There are six TCP flag bits:

– SYN Synchronise sequence numbers, 
especially for start-up

– ACK Acknowledgement number is valid
– FIN Finish of byte stream, i.e. close connection 

(in one direction)
– RST Reset the connection

– PSH Data so far is to be forwarded immediately,
TCP shouldn’t wait before sending it 
(not very useful these days)

– URG Urgent pointer field is valid 
(almost never used)



11 May 05314 S1C: IPv6, UDP, ICMP Page 20 of 32

TCP window and checksum
Receive Window

– Used for flow control, it tells how many bytes can be 
received beyond those acknowledged. The sender 
knows how many it has actually sent when it receives 
the acknowledgement, and therefore how many 
beyond that can still be received. The receiver may 
vary the window size.

Checksum
– Take the 1-s complement sum of the segment (as 16-

bit words) and store its complement as the checksum. 
(The checksum includes a 32-bit ‘pseudo- header’
including the IP addresses, protocol and length)



11 May 05314 S1C: IPv6, UDP, ICMP Page 21 of 32

TCP Connection Protocol
• TCP uses a modified 3-way handshake, to guard against lost or 

duplicated packets or segments. 
[Shay 2nd edition pp 522-523, pp 36-37 or 3rd edition p 578]

• On the diagram we use an Initial sequence number of 1.  Actual 
sequence numbers  are chosen at random,  not starting from 1!

time                                    time

Events at Site A
Send SYN=1, seq = x

Receive SYN + ACK 
Send ACK ack= y+1

Send data, from
seq = x+1, ack = y+1

Events at Site B

Receive SYN segment
Send SYN=1, seq=y,
and ACK=1. ack=x+1

Receive ACK segment

Send data, from
SEQ=Y+1, ACK=X+1



11 May 05314 S1C: IPv6, UDP, ICMP Page 22 of 32

TCP Disconnection Protocol
• Again, use a modified 3-way handshake, to guard against lost 

or duplicated packets or segments

time                                    time

Events at Site A
Receive CLOSE request:

Send FIN=1, seq=x

Receive acknowledgement

Receive FIN + ACK
Send ACK=1, ack=y+1

Events at Site B

Receive FIN segment:
inform user application
Send ACK=1. ack=x+1

Later.. User accepts:
send FIN=1, seq=y,
and ACK=1, ACK=x+1

Receive acknowledgement



11 May 05314 S1C: IPv6, UDP, ICMP Page 23 of 32

How TCP achieves reliability
• Two mechanisms:  checksum in each datagram and 

sequence numbering of bytes with acknowledgement
• Each datagram contains a sequence number for its 

first payload byte. Missing datagrams are detected by 
a sequence number that is too high compared to the 
number of bytes actually received

• Received bytes are acknowledged by returning the 
expected sequence number of the next expected byte 
to the sender, with the ACK flag set

• Sender resends unacknowledged bytes after a certain 
timeout

• Checksum detects errors in TCP datagrams –
datagram is dropped at receiver and correction is done 
by retransmission



11 May 05314 S1C: IPv6, UDP, ICMP Page 24 of 32

Example: Acking TCP datagrams – no error*

• …
• Host A -> Host B: 100 bytes, SEQ 13456
• Host B -> Host A: ACK, expect SEQ 13556 (=13456 + 99 

other bytes + 1) to come next
• Host A -> Host B: 200 bytes, SEQ 13556
• Host B -> Host A: ACK, expect SEQ 13756 (=13556 + 

199 other bytes + 1) to come next
• Host A -> Host B: 120 bytes, SEQ 13756
• Host B -> Host A: ACK, expect SEQ 13876 (=13756 + 

119 other bytes + 1) to come next
• …

* Host A sending data to Host B, simplified



11 May 05314 S1C: IPv6, UDP, ICMP Page 25 of 32

Example: Acking TCP datagrams – with error*
• …
• Host A -> Host B: 100 bytes, SEQ 13456
• Host B -> Host A: ACK, expect SEQ 13556 (=13456 + 99 

other bytes + 1) to come next
• Host A -> Host B: 200 bytes, SEQ 13556 (this is lost)
• Host A -> Host B: 120 bytes, SEQ 13756
• Host B -> Host A: ACK, expect SEQ 13556 to come next 
• Host A expects acknowledgement with expected Seq 13876. 

This is not coming, Host A times out and resends from the last 
acknowledged byte:

• Resend: Host A -> Host B: 200 bytes, SEQ 13556
• Host B -> Host A: ACK, expect SEQ 13876 (=13756 + 119 

other bytes + 1) to come next
• … * Host A sending data to Host B, simplified



11 May 05314 S1C: IPv6, UDP, ICMP Page 26 of 32

Why datagrams may be lost
• Dropped at an overloaded router (too many 

datagrams in the router’s queue)
• Corrupted by bit errors due to noise or 

interference – dropped at the receiver 
because checksum doesn’t compute to 
correct value

• Dropped at the receiver because the receiver 
cannot process the data at the required rate 
and its buffers are full



11 May 05314 S1C: IPv6, UDP, ICMP Page 27 of 32

TCP Congestion Control
• Size of TCP’s sliding window is varied to 

control sending rate
• TCP’s sending window is usually called its 

congestion window
• TCP senses congestion by observing lost 

packets, by watching sequence numbers
• When congestion occurs, the congestion 

window size is halved – exponential backoff
• TCP then increases the congestion window 

again, one segment at a time



11 May 05314 S1C: IPv6, UDP, ICMP Page 28 of 32

ICMP – Internet Control Message Protocol
Provides support for IP.
ICMP packets have an 8-bit message type, e.g.:
•

• Destination Unreachable (routing failure)

• Echo Request or Reply (PING to remote station) 
0 4 8 12 16 20 24 28

TYPE (8 or 0) CODE (0) CHECKSUM
IDENTIFICATION SEQUENCE NUMBER

OPTIONAL DATA

0 4 8 12 16 20 24 28

TYPE (3) CODE (0) CHECKSUM
UNUSED – MUST BE ZERO

IP HEADER + FIRST 64 BITS OF DATAGRAM



11 May 05314 S1C: IPv6, UDP, ICMP Page 29 of 32

ping and traceroute
Well-known applications for simple network testing
• ping lets you check whether a remote machine is 

reachable and how long it takes to get a reply
• ping is often misused for denial-of-service attacks 

these days. Many firewalls will drop ping packets
• traceroute is like ping, except that it will also show 

you all hosts along the route
• tracert under Windows
• If a TCP or UDP port on a host is unused, incoming 

connection requests / UDP packets are answered 
with an ICMP ‘Port unreachable’ message



11 May 05314 S1C: IPv6, UDP, ICMP Page 30 of 32

SSH - Secure SHell protocol
• ssh is an application that uses SSH to 

provide remote login to Internet hosts over
TCP via port 22

• Provides some terminal emulation (like telnet)
• All data between ssh client and remote host 

is encrypted
• Several different mechanisms to authenticate 

users (without having to send passwords in 
clear)

• Can run other protocols (e,g, file transfer) 
through an ssh tunnel



11 May 05314 S1C: IPv6, UDP, ICMP Page 31 of 32

FTP – File Transfer Protocol
• Mother of all download protocols!
• Carried over TCP, specification in RFC 959

Client
file-

system

Client
file-

system
Server

file-
system

Server
file-

system

User
FTP server

FTP client

User 
Interface

User
Protocol 

Interpreter

User
Data Transfer 

Process

Server
Protocol 

Interpreter

Server
Data Transfer 

Process

FTP commands
FTP replies

Data connection
(bidirectional, not 
always present)

21

20

N

N



11 May 05314 S1C: IPv6, UDP, ICMP Page 32 of 32

FTP commands
• open <host> open FTP connection to <host>
• quit
• lls [<dir>] local list
• lcd <dir> local change of directory
• ls [<dir>] remote list
• cd <dir> remote change of directory
• get <file> download file
• mget <filemask> download several files
• put <file> upload file
• mput <filemask> upload several files
• i enter binary mode
• a enter ASCII mode  (converts line breaks

automatically between different platforms) 


