
Error Detection and Control
Data transmission is traditionally error prone, but computers really prefer
data to be completely error-free. There are two ways of handling
transmission errors —

1. Error Correction, often called Forward Error Control (FEC). FEC
includes extra, redundant, information in the message so that lost data
can be reconstructed and any damage repaired.
• FEC is expensive, especially to handle burst errors rather than
occasional bit errors.
• FEC must be used where the original data is not available, such as
deep-space telemetry and data recording

2. Error Detection and retry, or Automatic Repeat Request (ARQ) relies
on powerful error detection and retransmission of faulty messages. It is
the usual method in data communications, as very good error detection
is much simpler than moderate error correction.
These “checksums” do not correct errors, just detect them.

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 1 of 35

3. Always, with both Forward Error Correction and Automatic Repeat
Request, we calculate a checksum or similar quantity from the data at
the sender and send this checksum with the data.
At the receiver the checksum is recomputed from the received data and
checked for agreement with that transmitted.
(Sometimes we do the check over (received data + checksum) but the
principle is unchanged.)

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 2 of 35

Forward Error Correction — Hamming Codes
With a codeword of

€

k = 2n −1 bits, a proper coding of an n-bit error field
should be able to indicate one of

€

2n conditions–

No error at all, OR which of the

€

k = 2n −1 bits has a single error.

With

€

k = 2n −1 bits in the codeword and n bits used for checking, there are
clearly i = k–n bits available for information.

This leads to the family of possible Single Error Correcting (SEC) codes,
described by their (codeword_length, data_length)

n k i description
2 3 1 (3, 1) A 2-out-of-3 majority code

3 7 4 (7, 4) The “usual” Hamming code

4 15 11 (15, 11) we use a version of this one

5 31 26 (31, 26)
6 63 57 (63, 57)

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 3 of 35

There are many codes that fit this specification, but the simplest, oldest,
and usual introduction is the Hamming code.

But first look at parity.

• The parity bit is an extra bit which is added to the information bits and
adjusted so that the overall bit count is either even or odd.

• All error correction uses parity bits, usually many of them, each
checking some of the bits so that the pattern of bits where the parity fails
indicates the position of the error. It is accurately described by the
following ditty

A message of content and clarity,
Has gotten to be quite a rarity –
To combat the terror
Of serious error,
Use bits of appropriate parity!

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 4 of 35

To handle 8-bit data we must use the (15,11) code, discarding 3 data bits to
get a (12, 8) code.

1. Take a 12-bit “word” with bits numbered 1 to 12 (NOT 0 to 11)

2. Allocate bits 2i to parity bits (1, 2, 4, 8), leaving the rest to data

3. Generate parities according to the table.

1 2 3 4 5 6 7 8 9 10 11 12
p1 p2 m1 p3 m2 m3 m4 p4 m5 m6 m7 m8

group 1 x x x x x x
group 2 x x x x x x
group 4 x x x x x
group 8 x x x x x

Parity bit 4 checks the parity of all positions whose binary bit number has
the bit for 22 = 4, and similarly for the other parity bits.

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 5 of 35

To illustrate, the 8-bit information word 01001010 expands first to
pp0p100p1010, creating space for the parity bits.
Assume odd parity (which ensures that there is at least 1 1-bit).

1 2 3 4 5 6 7 8 9 10 11 12
p1 p2 0 p3 1 0 0 p4 1 0 1 0

group 1 x x x x x x
group 2 x x x x x x
group 4 x x x x x
group 8 x x x x x

Then, p1 checks p1, m1, m2, m4, m5, m7 0, 1, 0, 1, 1 p1 = 0
p2 checks p2, m1, m3, m4, m6, m7 0, 0, 0, 0, 1 p2 = 0
p3 checks p3, m2, m3, m4, m8 1, 0, 0, 0 p3 = 0
p4 checks p4, m5, m6, m7, m8 1, 0, 1, 0 p4 = 1

The final codeword is 000010011010. (parity bits underlined)

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 6 of 35

Now assume an error 000011011010 (bit 6)

Without error correction, we extract the information bits — 01101010
which is NOT equal to the original 01001010

Now doing the error correction by counting 1s under each mask; as the
count should be odd, generate a syndrome bit=1 if count is even.

0 0 0 0 1 1 0 1 1 0 1 0
count syn-

drome
Group 1 x x x x x x 3 0
Group 2 x x x x x x 2 1
Group 4 x x x x x 2 1
Group 8 x x x x x 3 0

• Groups 2 and 4 fail; the error is in bit 2+4 = 6.

• Correct the received data to 000010011010
Delete the parity bits to get 01001010
and compare with the original 01001010 which is correct.

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 7 of 35

• The number locating the error is known as the syndrome, and is usually
zero if no error.

• We can add a single overall parity bit to get a SECDED code (Single
Error Correcting, Double Error Detecting).

• If two bits are corrupted, the overall parity is still OK, but at least one
internal parity fails, signalling an uncorrectable error.

• Going to codes which will correct multiple errors is a much more
difficult problems, far beyond this class.

• Compact discs have very powerful error correction
(BER is the bit error rate in reading from the disc)

Maximum completely correctable burst 4000 data bits

Uncorrected errors < 1 in 750 hrs @ BER =10-3

undetectable @ BER = 10-4

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 8 of 35

Error Detection with Retry (ARQ)
• Data communications errors tend to be rare and occur in bursts.

• Both aspects make it very difficult to design good error correction codes.

• It is more efficient to use very powerful error detection, with
retransmission (Automatic Repeat Request — ARQ).

• None of these checksums (1s complement, Fletcher, Adler or CRC) is
designed to correct errors (although some can do that to a very limited
extent, as in ATM cell headers); they are designed as error detectors.
(The Hamming code as described is a Single-Error-Correcting code
[SEC]; with an extra parity bit it becomes a Double-Error-Detecting
code as well [SEC-DED], but no more.)

• All are designed to give very good error detection, with very few errors
escaping detection (undetected errors often less than 1 in 109).

• The checksums all cover entire messages, not individual characters.

• Generally we ignore character parity completely from now on.
COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 9 of 35

Additive Checksums
These codes work by performing arithmetic addition on the words of the
message (longitudinal, or message, parity is a logical addition).

The simplest is the TCP/IP checksum, which is the 1’s complement sum of
all of the (16 bit) words of the message — assume 32-bit arithmetic.

sum += word; // do the addition
while (sum > 0xFFFF) // if beyond 16-bits -

sum = (sum & 0xFFFF) // isolate 16 low bits
+ (sum >> 16); // and add the “overflow”

It is simple, but not very good.

1. An error in one bit has a rather local effect on the checksum

2. All words are treated equally; it is insensitive to transpositions

Better checksums give different weights to different message positions.

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 10 of 35

Sum-of-sums checksums.
These maintain two sums in parallel; for each character (or word) compute

sum1 += word; // sum of the words so far
sum2 += sum1; // this is the sum-of-sums

• “sum1” is clearly the sum of all the words so far.

• For a message of 1…k characters,
sum2 = k w0 + (k–1) w1 + (k–2) w3 + … 2 wk–1 + wk

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 11 of 35

The Fletcher checksum (OSI Transport Layer – level 4) has sums modulo
255

s1 = (s1 + di) mod 255, and s2 = (s2 + s1) mod 255

The checksum is the 16 bit concatenation of s1 and s2; (256*s1 + s2)

The result is correct if either s1 = 0 or s2 = 0.

The Fletcher checksum is stated to be nearly as powerful as a CRC-16
check, detecting —

• all single-bit errors
• all double-bit erors
• all but 0.000019% of burst errors up to length 16
• all but 0.0015% of longer burst errors

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 12 of 35

The Adler checksum, for the GZIP compressor, is an improvement on the
Fletcher checksum, using 16-bit sums and a prime modulus.

s1 = (s1 + di) mod 65521
s2 = (s2 + s1) mod 65521

• The initial values are s1 = 1 and s2 = 0.
• The checksum is the 32 bits 65536*s1 + s2

Fletcher Checksum code
 int s1 = 0, s2 = 0; // initialise checksums
 for (int i = 0; i < nChars; i++) // scan the characters
 {
 s1 += c[i]; // add in the character
 while (s1 >= 255) // reduce modulo 255
 s1 -= 255;

 s2 += s1; // get the sum of sums
 while (s2 >= 255) // modulo 255
 s2 -= 255;
 }

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 13 of 35

Modulus Checks
This important class of checks is an extension of simple parity. It can be
illustrated by some simple decimal examples, say we check 23145.

1. Choose an agreed modulus m – a prime number just less than a power
of 10, such as m = 7 or m = 97.

2. Extend the number by zeros, as many as digits in the modulus.

3. Divide the extended number by m and get the remainder r.
(231450 mod 7 = 2; 2314500 mod 97 = 80.)

4. Replace the zero extension by (m–r), to give 231455 or 2314517.

5. Encode or transmit this new extended number.

6. To check on reception, divide the received number by the agreed
modulus – the remainder should be zero.

7. Discard the last (extension or remainder) digits and deliver the
preceding digits as the verifed number.

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 14 of 35

Polynomials involved in checking
The following checks work on bit vectors, and regard the bits as
coefficients of polynomial in some arbitrary variable x.

• i(x) Information The information or data to be checked

• g(x) Generator The system-defined divisor polynomial

• c(x) Codeword What is transmitted; i(x) with (i(x) mod g(x))
appended

• e(x) Error The error vector; e(x) = xi for a single bit error

• v(x) Received What is received; v(x) = e(x) + c(x)

Calculate the syndrome s(x) = v(x) mod g(x)
= [e(x) + c(x)] mod g(x)
= e(x) mod g(x) + c(x) mod g(x)
= e(x) mod g(x) + 0 by construction

The syndrome s(x) is a function only of the error vector e(x).
COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 15 of 35

Cyclic Redundancy Checks
• Most checking now uses Cyclic Redundancy Checks, which treats the

bits of the message as coefficients of an “information polynomial” i(x),
divides it by another “generator” polynomial g(x) and sends the
remainder as the check digits at the end of the message.

• The principles are identical to the previous slide, but details are different

• The two bit patterns are equivalent
1 0 0 1 0 1 ⇔ x5 + x2 + 1

and also 1 0 0 0 0 0 1 1 1 ⇔ x8 + x2 +x + 1

• Arithmetic follows the rules, with no carries
(0 – 0) = (1 – 1) = 0
(0 – 1) = (1 – 0) = 1

• A generator g(x) of order r has r+1 bits; and must have the form
1 … … 1, with its most-significant and least-significant bits both 1.

• We put r 0 bits after the dividend before performing the division.
COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 16 of 35

Example – get CRC for i(x) =1001001, with generator g(x) = 1011

 1 0 1 0 1 1 0

1 0 1 1) 1 0 0 1 0 0 1 0 0 0

first subtractionfirst subtractionfirst subtraction – 1 0 1 1 ↓

leading zero – ignoreleading zero – ignoreleading zero – ignoreleading zero – ignoreleading zero – ignore 0 1 0 0 ↓

1 0 0 0

2nd subtraction2nd subtraction2nd subtraction – 1 0 1 1 ↓ ↓

short cut – bring down 2 bits!short cut – bring down 2 bits!short cut – bring down 2 bits!short cut – bring down 2 bits!short cut – bring down 2 bits!short cut – bring down 2 bits!short cut – bring down 2 bits! 0 1 1 1 0
– 1 0 1 1 ↓

1 0 1 0
– 1 0 1 1 ↓

This is the remainderThis is the remainderThis is the remainderThis is the remainderThis is the remainder 0 1 0

Add the remainder to the original i(x); message with checksum is
1001001010 (data [1001001] + remainder [010] = 1001001010).

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 17 of 35

Check — divide c(x) = 1001001010 by g(x) = 1011
Divide the received codeword v(x) by g(x), without extending by 4 zeros.

 1 0 1 0 1 1 0

1 0 1 1) 1 0 0 1 0 0 1 0 1 0
– 1 0 1 1 ↓

0 1 0 0 ↓

1 0 0 0
– 1 0 1 1 ↓ ↓

0 1 1 1 0
– 1 0 1 1 ↓

1 0 1 1
– 1 0 1 1 ↓

Remainder is 000; message is correctRemainder is 000; message is correctRemainder is 000; message is correctRemainder is 000; message is correctRemainder is 000; message is correctRemainder is 000; message is correctRemainder is 000; message is correctRemainder is 000; message is correctRemainder is 000; message is correctRemainder is 000; message is correctRemainder is 000; message is correctRemainder is 000; message is correct 0 0 0

The quotient is discarded; only the fact that the remainder is zero or non-
zero important.
COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 18 of 35

Check — assume received codeword v(x) = 1001101010
Now v(x) = c(x) + e(x), where e(x) ≠ 0. Here e(x) = 0000100000.

 1 0 1 0 0 1 1
1 0 1 1) 1 0 0 1 1 0 1 0 1 0

– 1 0 1 1
0 1 0 1

1 0 1 0
– 1 0 1 1

0 0 1 1 0 1
– 1 0 1 1

Note correction to quotientNote correction to quotientNote correction to quotientNote correction to quotientNote correction to quotientNote correction to quotientNote correction to quotientNote correction to quotientNote correction to quotient 1 1 0 0
– 1 0 1 1

Remainder ≠ 0, so errorRemainder ≠ 0, so errorRemainder ≠ 0, so errorRemainder ≠ 0, so errorRemainder ≠ 0, so errorRemainder ≠ 0, so errorRemainder ≠ 0, so errorRemainder ≠ 0, so error 1 1 1

Remember, the only test is whether the remainder is zero or non-zero; its
precise value is unimportant and conveys no information.
COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 19 of 35

Construction of generator polynomial
1. A single bit error has e(x) = xi . If g(x) has two or more terms it will

never divide e(x) and all single-bit errors will be detected.

2. Two isolated single bit errors have e(x) = xi (x k +1). Find a g(x) which
does not divide x k +1, for k up to message length. Use a computer
search; for example x15 + x14 + 1 does not divide x k +1 for k < 32768.

3. If there are an odd number of bits in error, then e(x) has an odd number
of bits. As no polynomial with an odd number of bits has (x+1) as a
factor, make g(x) = (x+1)(… …).

4. A code with r check bits will detect all burst errors of length < r.

5. If the burst has length r +1, r(x) will be zero only if r(x) = g(x), and with
probability 1/2r–1.

6. For longer bursts the probability of an undetected error is 1/2r.

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 20 of 35

Standard CRC polynomials
These are all predefined and are agreed between sender and receiver.

CRC-12 x12 + x11 + x3 + x + 1 Old banking etc codes (6 bit)

CRC-16 x16 + x15 + x2 + x + 1 North American SDLC (8 bit)

CRC-ITU x16 + x12 + x5 + x + 1 ITU standard HDLC (8 bit)

IEEE 802 x32 + x26 + x23 + x22 + x16 IEEE 802 LAN standards
+ x12 + x11 + x10 + x8 + x7 & others
+ x5 + x4 + x2 + x +1

ATM HEC x8 + x2 + x + 1 ATM cell headers

ATM AAL3/4 x10 + x9 + x5+ x4 + x + 1 some ATM traffic

The CRC-16 and CRC-ITU checks can detect —
• all bursts ≤ 16 bits,
• all odd-bit errors and
• 99.998% of error bursts exceeding 17 bits

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 21 of 35

Misconceptions
CommentAlleged disadvantage

All of them must send the
checksum!

It is hard to make, but is then
defined in the standard

A disadvantage of CRC-16 is that its
generator is difficult to make

The generator is agreed
between sender and receiver
and is not transmitted

A disadvantage of CRC-16 is that you
must send also the generator polynomial

A16-bit additive checksum
is about as good as a 10-bit
CRC.

A 1s complement check can detect only a
single-bit error.

They are not designed to
correct errors, but give good
error detection

A disadvantage of CRC-16, Fletcher and
1s complement sums is that they cannot
correct an error.

Some of them are inefficient because we
must send the checksum with the message

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 22 of 35

Data Compression
Various techniques —

1. Use a Huffman or similar variable length code and assign short codes
to more frequent symbols. Needs a coding dictionary and not very
effective.

2. Run-length coding. Many files have lots of spaces (ASCII 0x20); for
example replace these runs by DLE i j, where i and j are ASCII decimal
digits. (A run of 27 spaces would be replaced by “DLE 2 7”.)
Especially useful for FAXes with long runs of 0s and 1s (but use a
different scheme!)

3. Codebooks. Assign codes to frequent words and then run as extension
to 1 above. Excellent in some contexts, but inflexible.

4. Dictionary compressors use the redundancy in text, to replace already
known letter sequences or phrases by dictionary indices to those
phrases. These compressors learn from the text and adapt to it.

5. Relative or differential coding is used for image data; send the changes
between frames.

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 23 of 35

LZW compression
LZW was proposed by Welch as a variant of a compressor originally
proposed by Ziv & Lempel, and is the compressor normally used in data
communications.

An LZW compressor

• has a dictionary of known phrases or “letter sequences” that it has seen.
The dictionary is initialised with all possible character codes, eg 0…255.

• The compressor accepts input symbols as long as the most recent
symbols correspond to known phrases in the dictionary.

• As soon as the matching fails, the compressor emits the dictionary index
of the known phrase and then creates a new phrase consisting of the
known phrase followed by the character which “failed”.

• Continue, building a new test string for phrase comparisons.

• The dictionary is initialised to all values, 0…255, NOT as in text

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 24 of 35

Example of LZW compression
 Encoder, input is “the_theme_that_they_heard”.

the_theme_that_they_heardthe_theme_that_they_heardthe_theme_that_they_heardthe_theme_that_they_heard DictionaryDictionary
Pass Input Test

String
Emit Make

Entry
Comment Index Contents

1 t t 0 256
2 h th t th … ASCII
3 e he h he 255 Codes
4 _ e_ e e_ 256 th
5 t _t _ _t 257 he
6 h th th exists – continue 258 e_
7 e the th (256) the 259 _t
8 m em e em 260 the
9 e me m me 261 em

10 _ e_ e_ exists 262 me
11 t e_t e_ (258) e_t 263 e_t
12 h th th exists 264 tha
13 a tha th (256) tha 265 at
14 t at a at 266 t_
15 _ t_ t t_ 267 _th

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 25 of 35

LZW example, continued

the_theme_that_they_heardthe_theme_that_they_heardthe_theme_that_they_heardthe_theme_that_they_heardthe_theme_that_they_heard DictionaryDictionary
Pass Input Test

String
Emit Make

Entry
Comment Index Contents

15 _ t_ t t_ 256 th
16 t _t _t exists 257 he
17 h _th _t (259) _th 258 e_
18 e he he exists 259 _t
19 y hey he (257) hey 260 the
20 _ y_ y y_ 261 er
21 h _h _ _h 262 re
22 e he he exists 263 e_t
23 a hea he (257) hea 264 tha
24 r ar a ar 265 at
25 d rd r rd 266 t_

267 _th
268 hey
269 y_
270 _h
271 hea

Error in early copies 2nd Ed : p 198 Fig 3.35, line 19 should be “…with current, c”

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 26 of 35

LZW Decoding
the_theme_that_they_heardthe_theme_that_they_heardthe_theme_that_they_heardthe_theme_that_they_heard DictionaryDictionary
Pass Receive

codeword
Make
Entry

Deliver Index Contents

1 t t 0 256
2 h th h … ASCII
3 e he e 255 Codes
4 _ e_ _ 256 th
5 (256) th _t th 257 he
6 e the e 258 e_
7 m em m 259 _t
8 (258) e_ me e_ 260 the
9 (256) th e_t th 261 em

10 a tha a 262 me
11 t at t 263 e_t
12 (259) _t t_ _t 264 tha
13 (257) he _th he 265 at
14 y hey y 266 t_
15 _ y_ _ 267 _th
16 257 (he) _h he 268 hey
17 a hea a 269 y_
18 r ar r 270 _h
19 d rd d 271 hea

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 27 of 35

Example — compress

gaattcctgagaggagagagtaagcaacttggaa
gaattcctgagaggagagagagtaagcaacttggaaaatatagaattcctgagaggagagagagtaagcaacttggaaaatatagaattcctgagaggagagagagtaagcaacttggaaaatatagaattcctgagaggagagagagtaagcaacttggaaaatatagaattcctgagaggagagagagtaagcaacttggaaaatatagaattcctgagaggagagagagtaagcaacttggaaaatatagaattcctgagaggagagagagtaagcaacttggaaaatata
Loop Buffer c What is sent stored in

dictionary
new buffer

value
Comment index Entry

1 g a g ga a 0 … 255 ASCII codes
2 a a a aa a 256 ga
3 a t a at t 257 aa
4 t t t tt t 258 at
5 t c t tc c 259 tt
6 c c c cc c 260 tc
7 c t c ct t 261 cc
8 t g t tg g 262 ct
9 g a ga ga exists 263 tg
10 ga g ga (256) gag g 264 gag
11 g a ga ga exists 265 gagg
12 ga g gag gag exists 266 gaga
13 gag g gag (264)gagg g 267 ag
14 g a ga ga exists 268 gagt
15 ga g gag gag exists 269 ta
16 gag a gag(264) gaga a 270 aag

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 28 of 35

gaattcctgagaggagagagtaagcaacttggaaaatatagaattcctgagaggagagagtaagcaacttggaaaatatagaattcctgagaggagagagtaagcaacttggaaaatatagaattcctgagaggagagagtaagcaacttggaaaatatagaattcctgagaggagagagtaagcaacttggaaaatatagaattcctgagaggagagagtaagcaacttggaaaatatagaattcctgagaggagagagtaagcaacttggaaaatata
Loop Buffer c What is sent stored in

dictionary
new buffer

value
Comment index Entry

17 a g a ag g 271 gc
18 g a ga ga exists 272 ca
19 ga g gag gag exists 273 aac
20 gag t gag (264)gagt t 274 ctt
21 t a t ta a 275 tg
22 a a aa 276 gg
23 aa g aa (257) aag g 277 gaa
24 g c g gc c 278 aaa
25 c a c ca a 279 ata
26 a a aa aa exists
27 aa c aa (257) aac c
28 c t ct ct exists
29 ct t ct (262) ctt t
30 t g t tg g
31 g g g gg g
32 g a ga ga exists
33 ga a 256 (ga) gaa a
34 a a aa aa exists

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 29 of 35

LZW decoding
The basic steps in LZW decoding are

1. Remember the previous phrase

2. Receive the current index and get its (current) phrase

3. Emit the current phrase

4. Create a new dictionary entry of the previous phrase followed by the
first symbol of the current phrase.

There is one nasty problem, illustrated on Shay Table 3.11 p200, and seen
on pass 10 of the following example. (Table 5.10, p 235, 3rd Ed)

 If the received index is to the phrase which would be created by this step,
it looks as though we cannot create this phrase until we know what it is,
but we can’t know what it is until it is created … … … …

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 30 of 35

The LZW recursive entry problem
In normal operation we receive an

index i for phrase “abc”, followed by an
index j for phrase “xyz”.

From receiving index j we can create a new dictionary entry “abcx” at
index k.

• But here the preceding phrase was “pqr” and we know that we must
create a new phrase “pqr?”, extending that preceding phrase by one
symbol.

• But the old and the new phrases overlap by one symbol because of the
way the dictionary entries are made

p q r ?
p q r ?

• The phrase to be created must be the preceding phrase, followed by its
first character.

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 31 of 35

LZW decoding the previous example
Loop
Pass

Prior
(String)

Current
(string)

Create
entry

c (first
symbol)

TempString/
Code Pair

What is
printed

index Entry

0 … 255 ASCII codes
1 — — g — — g g 256 ga
2 g a ga a a 257 aa
3 a a aa a a 258 at
4 a t at t t 259tc
5 t t tt t t 260 tt
6 t c tc c c 261 cc
7 c c cc c c 262 ct
8 c t ct t t 263 tg
9 t ga(256) tg g ga 264 gag
10 ga gag(264) gag g gag 265 gagg
11 gag gag(264) gagg g gag 266 gaga
12 gag a gaga a a 267 ag
13 a gag(264) ag g gag 268 gagt
14 gag t gagt t t 269 ta
15 t aa(257) ta a 270 aag
16 aa g aag g 271 gc
17 g c gc c 272
18 c aa(257) ca 273

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 32 of 35

BZIP2 compressor (Burrows-Wheeler Transform)
(not examinable)

1. Write out all cyclic permutations of the input as rows of a matrix

2. Sort the rows into alphabetic order; this collects together similar
contexts

3. Transmit the last symbol of each row, and the index of the first row.
(Similar contexts produce similar symbols and often runs of the one
symbol.)

4. Use a Move-to-Front or recency recode of each symbol; replace each by
the number of different symbols seen since it was last encountered.

5. The output numbers have a very skew distribution — use a Huffman or
similar statistical encoder.

6. Some actual frequencies for a text file are —
Value 0 1 2 3 4 5 6 7
Frequency 66.8% 9.0% 4.0% 2.9% 2.3% 1.8% 1.6% 1.4%

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 33 of 35

Example — “mississippi”
1. Each row has the entire input string

2. The start of each row is the context following the last symbol of the
row.

3. The first time “p”, “s”, “m”, “i” are seen their MTF codes can be
anything; (assume the ASCII value)

context symbol Index MTF context link
imississip p 1 112 i… 5
ippimissis s 2 115 i… 7
issippimis s 3 0 i… 10
ississippi m 4 109 i… 11

→ mississipp i 5 105 m… 4
pimississi p 6 3 p… 1
ppimississ i 7 1 p… 6
sippimissi s 8 4 s… 2
sissippimi s 9 0 s… 3
ssippimiss i 10 1 s… 8
ssissippim i 11 0 s… 9

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 34 of 35

Yes, the transformation can be reversed!

1. By counting symbols we know that 4 contexts start with “i”, 1 with
“m”, 2 with “p” and 4 with “s”. These are shown in the 6th column of
the table.

2. The first “i” context (at 1) corresponds to the first “i” symbol (at 5), the
context at 2 to the symbol at 7 and so on, building links as shown in the
last column.

3. The initial index is 5, which links to symbol 4, an “m”.

4. Then follow the links 4(m) → 11(i) → 9(s) → 3(s) → 10(i) → 8(s) →
2(s) → 7(i) → 6(p) → 1(p) → 5(i) → (back to start)

Typical compression of text is —

LZW 4.0 – 4.5 bits per character, or 50 – 55% of original size

BZIP 2.0 – 2.5 bits per character, or 25 – 30% of original size

COMPSCI 314FC — Error Control and Compression 21 May 2004 Page 35 of 35

